Master's Dissertation at the Div. of Engineering Acoustics

SIMULATION OF THE HUMAN

FOOTSTEPS INDUCED FLOOR

Jimmy Claesson

Presentation Summer 2008

Summer 2008

Report

will be published as report TVBA-5038

Supervisors

Delphine Bard, PhD Div. of Engineering Acoustics, Lund

Julia Sonnerup, Postgr.Student Div. of Structural Mechanics, Lund

Kristian Stålne, Postgr.Student Div. of Structural Mechanics, Lund

Examiner

Göran Sandberg, Professor Div. of Structural Mechanics, Lund

The work is performed at

Div. of Engineering Acoustics, Faculty of Engineering, Lund University

Background of this project:

VIBRATIONS

In the traditional prediction calculations for the purpose of building acoustic design, the footsteps induced impact excitations are always simulated in a frequency range under 500 Hz. The trend of the modern building construction strives after simple and functional solutions for the multi-family dwellings. The tenants want to have a quiet living environment as if they are the only family who lives in this building; this demand gives a number of difficulties in the acoustic design.

To be able to estimate an impact excitation of the human footsteps induced in the acoustic calculations with less possible simplification, a statistical investigation of the geometrical walking pattern is needed. The step length and the footfall's angles are the main target. With the help of the measurement values, a comparison test of the deflection will be performed on two different floor structures, the standard concrete floor and the light weight wood floor with the help of a Finite element soft ware, Msc MD Nastran 2006.

Task descriptions

1: Investigate the geometrical human walking pattern with a broad range of the walking objects.

2: Estimate structure vibration pattern for two floor structures, the concrete floor and the light weight wood floor.

3: A general acoustic insulation design guideline of human footsteps induced excitations.

Div. of Engineering Acoustics - Lund University - Box 118 - SE-221 00 - Lund - Sweden - Tel: 046-222 73 70 - Fax: 046-222 44 20 - www.akustik.lth.se - xpTVBA5038(0801)