### Rumsakustik

Erling Nilsson, Akustiker ECOPHON Saint-Gobain







Community school no 15, Gdynia, Poland. Architect: Adam Drochomiercki. Photo: Szymon Polanski. System: Ecophon Master A/alpha









# Saint-Gobain

- One of the world's 100 leading industry groups
- Focusing on habitat and construction
- Established in 1665
- Present in 64 countries
- 190 000 employees
- ~ €40 billion in sales



Spegelsalen i Versailles



### Four market segments



Education



Modern Office

Healthcare



**Clean Industry** 

- Long experience of how sound affects people
- Specialised knowledge about segment specific activities
- Systems developed for specific needs



# Benefits of good acoustics

- Increased wellbeing and satisfaction
- Less tiredness
- Easier to concentrate
- Fewer errors
- Less stress hormones
- Easier to communicate
- More positive energy
- Increased creativity





## Room Acoustic design in practise





### Innehåll

- Något om Ecophon
- Rumsakustik i praktiken
- Betydelsen av god akustik
- Rumsakustik och ljudabsorption
- "Activity based acoustic design"
- Rumsakustiska mått
- Effekt av akustikreglering I klassrum
- Öppna kontorslandskap
- Några exempel på akustikreglering



### Schools:



Positive effects of a good sound environment in educational premises include:

- Reduced vocal strain and voice disorders for teachers
- Improved concentration
- Reduced tiredness, fatigue and stress levels
- Easier to hear and be heard with improved speech clarity
- Optimised environment for multi-communicational activities such as group work
- Improved student behaviour and reduced burden on school and classroom management



C Ecophon Group

### Healthcare:

Better sound environment contributes to:

- Lowering of blood pressure
- Improving quality of sleep
- Reducing intake of pain medication
- Reducing the number of re-admissions
- Improving the wellbeing of staff and increasing perceived performance





### **Open-plan offices:**



 In a modern flexible OPO, the creation of a functional work station is a complex process in which acoustic planning is only one part of a series of considerations having to be addressed. The open-plan office should support both communication and concentrated work. Thus, for an OPO to be an efficient and comfortable place of work there are several other requirements than acoustic treatment that have to be fulfilled.



# WHO report



Public health experts agree that environmental risks constitute 24% of the burden of disease. Widespread exposure to environmental noise from road, rail, airports and industrial sites contributes to this burden. One in three individuals is annoyed during the daytime and one in five has disturbed sleep at night because of traffic noise. Epidemiological evidence indicates that those chronically exposed to high levels of environmental noise have an increased risk of cardiovascular diseases such as myocardial infarction. Thus, noise pollution is considered not only an environmental nuisance but also a threat to public health.



### Sabine formula

$$T = 0.16 \left(\frac{V}{A}\right)$$
 or  $A = 0.16 \left(\frac{V}{T}\right)$ 

where

T=the reverberation time (s) V=the room volume (m<sup>3</sup>) A=the total equivalent absorption area (m<sup>2</sup> sabin)

The equivalent absorption area A for a surface with area S  $m^2$  is equal to  $\alpha \times S$  where  $\alpha$  is the absorption coefficient for the surface



## Acoustic design with Sabine formula

Example: The reverberation time in a room with a volume of 200 m<sup>3</sup> is 2,5 s at 1000 Hz. Target value for the reverberation time is 0,40 s at 1000 Hz

□ A(before treatment)=0,161xV/T= 0,161x200/2,5=12,9 m<sup>2</sup> sabin

□ A(needed to fulfil 0,40 s)= 0,161xV/T=0,161x200/0,40=80,5 m<sup>2</sup> sabin

A( to be added to fulfil 0,40 s)=A(needed)-A(before)=80,5-12,9=67,6 m<sup>2</sup> sabin

If e.g. the absorption coefficient for a ceiling absorber is 0,90 at 1000 Hz we will need S= A/ $\alpha$ =67,6/0,90=75 m<sup>2</sup>



# Sabine formula: How it works in theory





| Material                                                                                                                   | Sound absorption coefficient $\alpha_s$<br>in octave bands, centre frequency in Hz |            |            |              |       |           |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|------------|--------------|-------|-----------|--|
|                                                                                                                            | 125                                                                                | 250        | 500        | 1 000        | 2 000 | 4 000     |  |
| concrete, plastered brick                                                                                                  | 0,01                                                                               | 0,01       | 0,01       | 0,02         | 0,02  | 0,03      |  |
| brickwork, unplastered                                                                                                     | 0,02                                                                               | 0,02       | 0,03       | 0,04         | 0,05  | 0,07      |  |
| hard floor coverings (e.g. PVC, parquet) on heavy floor                                                                    | 0,02                                                                               | 0,03       | 0,04       | 0,05         | 0,05  | 0,06      |  |
| soft floor covering on heavy floor; $\leq 5~\text{mm}$                                                                     | 0,02                                                                               | 0,03       | 0,06       | 0,15         | 0,30  | 0,40      |  |
| soft floor covering on heavy floor; ≥ 10 mm                                                                                | 0,04                                                                               | 0,08       | 0,15       | 0,30         | 0,45  | 0,55      |  |
| wooden floor, parquet on battens                                                                                           | 0,12                                                                               | 0,10       | 0,06       | 0,05         | 0,05  | 0,06      |  |
| windows, glass facade                                                                                                      | 0,12                                                                               | 0,08       | 0,05       | 0,04         | 0,03  | 0,02      |  |
| doors (wood)                                                                                                               | 0,14                                                                               | 0,10       | 0,08       | 0,08         | 0,08  | 0,08      |  |
| net curtain; 0 mm - 200 mm in front of hard surface <sup>1</sup>                                                           | 0,05                                                                               | 0,04       | 0,03       | 0,02         | 0,02  | 0,02      |  |
| curtain, < 0,2 kg/m <sup>2</sup> ; 0 mm - 200 mm in front of hard surface; typical minimum <sup>1</sup>                    | 0,05                                                                               | 0,06       | 0,09       | 0,12         | 0,18  | 0,22      |  |
| curtain, woven material $\approx$ 0,4 kg/m²; folded or ruffled $>$ 1:3, 0-200 mm in front of hard surface; typical maximum | 0,10                                                                               | 0,40       | 0,70       | 0,90         | 0,95  | 1,00      |  |
| large openings (smallest dimension > 1 m)                                                                                  | 1,00                                                                               | 1,00       | 1,00       | 1,00         | 1,00  | 1,00      |  |
| air grid, 50 % open area                                                                                                   | 0,30                                                                               | 0,50       | 0,50       | 0,50         | 0,50  | 0,50      |  |
| NOTE These data are based on publications used in A                                                                        | ustria, Den                                                                        | mark and   | the Nether | lands.       | X     | 15 S<br>1 |  |
| <sup>1</sup> in front of a window the values of the combination can i                                                      | ncrease to                                                                         | the values | for such a | a window ald | one.  |           |  |

#### Table B.1 — Typical values for the absorption coefficient



### Absorption data from EN 12354-6

| Object                                                                                            | Equivalent absorption area A <sub>obj</sub><br>in octave bands, centre frequency in Hz |      |      |       |       |       |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|------|-------|-------|-------|--|
|                                                                                                   | 125                                                                                    | 250  | 500  | 1 000 | 2 000 | 4 000 |  |
| single chair, wood                                                                                | 0,02                                                                                   | 0,02 | 0,03 | 0,04  | 0,04  | 0,04  |  |
| single chair, upholstered                                                                         | 0,10                                                                                   | 0,20 | 0,25 | 0,30  | 0,35  | 0,35  |  |
| single person in a group, sitting or<br>standing, 1 per 6 m <sup>2</sup> area; typical<br>minimum | 0,05                                                                                   | 0,10 | 0,20 | 0,35  | 0,50  | 0,65  |  |
| single person in a group, sitting, 1 per<br>6 m <sup>2</sup> area; typical maximum                | 0,12                                                                                   | 0,45 | 0,80 | 0,90  | 0,95  | 1,00  |  |
| single person in a group, standing,<br>1 per 6 m <sup>2</sup> area; typical maximum               | 0,12                                                                                   | 0,45 | 0,80 | 1,20  | 1,30  | 1,40  |  |

#### Table C.1 — Typical values for the equivalent absorption area for some common objects

Table C.2 — Typical vales for the sound absorption coefficient for some common specified arrays of objects

| Array of objects                                                       | Sound absorption coefficient $\alpha_s$<br>in octave bands, centre frequency in Hz |      |      |       |       |       |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|------|-------|-------|-------|--|--|
|                                                                        | 125                                                                                | 250  | 500  | 1 000 | 2 000 | 4 000 |  |  |
| chairs in a row at 0,9m – 1,2m;<br>wood/plastic                        | 0,06                                                                               | 0,08 | 0,10 | 0,12  | 0,14  | 0,16  |  |  |
| chairs in a row at 0,9m – 1,2m;<br>upholstered; typical minimum        | 0,10                                                                               | 0,20 | 0,30 | 0,40  | 0,50  | 0,50  |  |  |
| chairs in a row at 0,9m – 1,2m;<br>upholstered; typical maximum        | 0,50                                                                               | 0,70 | 0,80 | 0,90  | 1,0   | 1,0   |  |  |
| persons sitting in a row at 0,9m – 1,2m<br>(audience); typical minimum | 0,20                                                                               | 0,40 | 0,50 | 0,60  | 0,70  | 0,70  |  |  |
| persons sitting in a row at 0,9m - 1,2m<br>(audience); typical maximum | 0,60                                                                               | 0,70 | 0,80 | 0,90  | 0,90  | 0,90  |  |  |
| children in a hard furnished class room,<br>1 per m <sup>2</sup> area  | 0,10                                                                               | 0,20 | 0,25 | 0,35  | 0,40  | 0,40  |  |  |



# Sabine formula: How it works in theory



 $A = \sum \alpha_i x S_i = 0,10x6x7,5+2x0,15x7,5x2,5+2x0,15x6x2,5+0,80x6x7,5=51 \text{ m}^2 \text{ sabin}$ 

T<sub>60</sub>=0,161x(V/A)=0,161x112,5/51≈0,36 s



# Not a typical classroom





# **Definition: Reverberation time**

Sound pressure level, dB



Reverberation decay in rooms with suspended absorbent ceiling





# Typical classroom





### Effect of furniture





# Scattering – why is it important?





### Reflection from a surface



**Specular reflection** 

Angle of reflection equals angle of incidence

Absorption coefficient:

$$\alpha = \frac{I_{inc} - I_{refl}}{I_{inc}} = \frac{I_{abs}}{I_{inc}}$$



## Reflection from a surface



### **Specular reflection**

- -Angle of reflection equals
  - angle of incidence

### **Diffuse reflection**

- -Scattered in many
  - directions



### Reflection from a surface



### Scattering coefficient, s

- Fraction of energy which is scattered
- Always between 0 and 1



# Absorption and scattering



### Simulation of sound fields





# PARISM – simulation tool for ordinary rooms

Industrial PhD project together with DTU

The image source method







Forskning

### *Forskning* Auralisation with loudspeaker array using higher order ambisonics







Activity based acoustic design – a method to approach room acoustic design





### Assessment of sound in rooms

# Physiological and psychological region

#### Sensation

- Sound strength
- Clarity
- Sharpness
- ...

### Preference





# Assessment of sound in rooms





### Room types



# Room acoustic quality aspects

- Reverberation
- Speech clarity
- Auditory strength
- Spatial decay



## Efterklang

Relaterar till hur snabbt ljudenergin försvinner i ett rum



Kort efterklang





### Parameters for performance spaces ISO 3382-1

| Subjective quality | Objective measure                               |
|--------------------|-------------------------------------------------|
| Clarity            | Clarity index (C <sub>80</sub> )                |
| Reverberance       | Early decay time (EDT))                         |
| Intimacy           | Sound strength (level)                          |
| Source broadening  | Early lateral fraction and strength             |
| Loudness           | Sound strength and source-<br>receiver distance |

M. Barron, The development of concert hall design – A 111 year experience, Proce edings of the Institute of Acoustics, Vol. 28. Pt. 1. 2006



![](_page_37_Picture_4.jpeg)

# ISO 3382-2: Reverberation time in ordinary rooms

ISO 3382-3: Open plan offices  $(T_{20} not included)$ 

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

Schools

Offices

![](_page_38_Picture_7.jpeg)

Hospitals

![](_page_38_Picture_9.jpeg)

### Room acoustic quality aspects and parameters

Ordinary rooms:

- Reverberation:  $T_{20}$  (s), ISO 3382-2
- Speech clarity: C<sub>50</sub> (dB), ISO 3382-1
- Auditory strength: G (dB), ISO 3382-1

Open plan spaces:

• Spatial decay: according to ISO 3382-3

![](_page_39_Picture_8.jpeg)

### Definition of room acoustic measures: Speech Clarity C<sub>50</sub> (dB)

$$C_{50} = 10 \times \log(\frac{\text{Energy}(0-50\text{ms})}{\text{Energy}(50-\text{end})})$$
 , dB

![](_page_40_Figure_3.jpeg)

![](_page_40_Picture_4.jpeg)

### Room acoustic measures: Sound strength G (dB)

 $G = Lp_{Room} - Lp_{10m} = Lp - Lw + 31 \text{ dB}$  (omni-directional sound source)

![](_page_41_Figure_3.jpeg)

G=70 dB - 60 dB= 10 dB

![](_page_41_Picture_5.jpeg)

### Sound Power Source

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

#### Certificate No: CAL 022-2014-4810

#### Measurement results:

The sound power level of the reference sound source, relative to  $10^{-22}$  W, normalised to the stated reference conditions, is given in the table below. Broadband levels are computed from the summed energy in each 1/3-octave band with midband frequency from 50 Hz to 20 kHz.

| Frequency  | L <sub>w</sub> | L,,        | Uncertainty (20) | Directivity |
|------------|----------------|------------|------------------|-------------|
| Hz         | dB re 1 pW     | dB re 1 pW | dB               | dB          |
|            | 1/3-octave     | 1/1-octave |                  |             |
| 20 *       | 62,0           |            | 2,0              | 4,4         |
| 25 *       | 65,5           | _          | 1,8              | 2,3         |
| 31.5 *     | 66,7           | 71,5       | 1,7              | 2,1         |
| 40 *       | 67,8           |            | 1,6              | 1,9         |
| 50         | 67,8           |            | 1,5              | 2,2         |
| 63         | 71,1           | 75,8       | 1,3              | 2,1         |
| 80         | 72,9           |            | 1,0              | 2,4         |
| 100        | 74,4           |            | 0,9              | 2,1         |
| 125        | 75,2           | 79,9       | 0,8              | 1,8         |
| 160        | 75,6           |            | 0,8              | 2,0         |
| 200        | 74,6           |            | 0,7              | 2,1         |
| 250        | 75,5           | 80,4       | 0,7              | 2,3         |
| 315        | 76,6           |            | 0,6              | 2,4         |
| 400        | 76,9           |            | 0,5              | 2,6         |
| 500        | 77,0           | 81,9       | 0,5              | 2,6         |
| 630        | 77,6           |            | 0,5              | 2,6         |
| 800        | 78,4           |            | 0,5              | 2,7         |
| 1 k        | 78,9           | 83,7       | 0,5              | 1,8         |
| 1,25 k     | 79,4           |            | 0,5              | 2,8         |
| 1,6 k      | 80,4           |            | 0,5              | 2,8         |
| 2 k        | 82,8           | 87,7       | 0,5              | 2,2         |
| 2,5 k      | 84,6           |            | 0,5              | 2,4         |
| 3,15 k     | 83,6           |            | 0,5              | 2,3         |
| 4 k        | 83,0           | 87,6       | 0,5              | 2,9         |
| 5 k        | 81,7           |            | 0,6              | 1,5         |
| 6,3 k      | 80,8           |            | 0,6              | 3,3         |
| 8 k        | 78,3           | 83,5       | 0,7              | 1,9         |
| 10 k       | 75,8           |            | 0,8              | 2,1         |
| 12,5 k     | 73,8           |            | 1,0              | 1,0         |
| 16 k       | 72,5           | 77,3       | 1,1              | 1,9         |
| 20 k       | 70,7           |            | 1,2              | 1,7         |
| Lin        | 93,2           |            | 0,4              | -           |
| A-weighted | 93,1           |            | 0,5              |             |

\* Values for frequencies marked with \* are not covered by the accreditation.

![](_page_42_Picture_8.jpeg)

Sound strength G (dB)

 $G=L_{p}-L_{W}+31 (dB)$ 

![](_page_42_Picture_11.jpeg)

# Just noticeable difference of room acoustic quantities according to ISO 3382-1

| Subjective listener<br>aspect | Room acoustic quantity                        | Just noticeable<br>difference |
|-------------------------------|-----------------------------------------------|-------------------------------|
| Subjective level of sound     | Sound Strength G in dB                        | 1 dB                          |
| Perceived<br>reverberance     | Reverberation time T <sub>20</sub> in seconds | 5%                            |
| Perceived clarity of sound    | Speech Clarity C <sub>50</sub> in dB          | 1 dB                          |

![](_page_43_Picture_3.jpeg)

### Room acoustic measurements

![](_page_44_Figure_2.jpeg)

![](_page_44_Picture_3.jpeg)

# Small meeting rooms

Two similar rooms with different ceiling treatment.

Room 1: Ceiling absorber  $\alpha_w = 1.0$ Room 2: Ceiling absorber  $\alpha_w = 0.1$ 

Floor area =  $12 \text{ m}^2$ Height = 2.7 m

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)

# Semantic differential questionnaires

|                                           | Extremely | Very | Fairly | Partly | Fairly | Very | Extremely |                                            |
|-------------------------------------------|-----------|------|--------|--------|--------|------|-----------|--------------------------------------------|
| Distinct                                  |           |      |        |        |        |      | Х         | Indistinct                                 |
| Pleasant                                  |           |      |        |        |        |      |           | Unpleasant                                 |
| Dry                                       |           |      |        |        |        |      |           | Reverberant                                |
| Best possible<br>listening<br>environment |           |      |        |        |        |      |           | Worst possible<br>listening<br>environment |
| Best possible<br>speaking<br>environmen   |           |      |        |        |        |      |           | Worst possible<br>speaking<br>environmen   |

![](_page_46_Picture_2.jpeg)

# Semantic differential questionnaires

|                                           | Extremely | Very | Fairly | Partly | Fairly | Very | Extremely |                                            |
|-------------------------------------------|-----------|------|--------|--------|--------|------|-----------|--------------------------------------------|
| Distinct                                  |           | Х    |        |        |        |      |           | Indistinct                                 |
| Pleasant                                  |           |      |        |        |        |      |           | Unpleasant                                 |
| Dry                                       |           |      |        |        |        |      |           | Reverberant                                |
| Best possible<br>listening<br>environment |           |      |        |        |        |      |           | Worst possible<br>listening<br>environment |
| Best possible<br>speaking<br>environmen   |           |      |        |        |        |      |           | Worst possible<br>speaking<br>environmen   |

![](_page_47_Picture_2.jpeg)

# Listening test

![](_page_48_Figure_1.jpeg)

Extremely Very Fairly Partly Fairly Very Extremely

![](_page_48_Picture_3.jpeg)

# Listening test

![](_page_49_Figure_1.jpeg)

Extremely Very Fairly Partly Fairly Very Extremely

![](_page_49_Picture_3.jpeg)

# Listening test

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

# Listening test

![](_page_51_Figure_2.jpeg)

Extremely Very Fairly Partly Fairly Very Extremely

![](_page_51_Picture_4.jpeg)

### Listening test

![](_page_52_Figure_2.jpeg)

Extremely Very Fairly Partly Fairly Very Extremely

![](_page_52_Picture_4.jpeg)

### Measurement results

![](_page_53_Picture_2.jpeg)

![](_page_53_Figure_3.jpeg)

![](_page_53_Figure_4.jpeg)

![](_page_53_Figure_5.jpeg)

![](_page_53_Picture_6.jpeg)

### Measurement results, with wall panels

![](_page_54_Picture_2.jpeg)

![](_page_54_Figure_3.jpeg)

![](_page_54_Figure_4.jpeg)

![](_page_54_Figure_5.jpeg)

![](_page_54_Picture_6.jpeg)

## Ecophon recommendation: Schools

| Criteria          | Parameter*           | Target values |
|-------------------|----------------------|---------------|
| Speech clarity    | C <sub>50</sub> (dB) | 6 – 8 dB      |
| Sound<br>strength | G (dB)               | 15 – 17 dB    |
| Reverberation     | T <sub>20</sub> (s)  | 0,40 – 0,50 s |

\* Average 125 to 4000 Hz

![](_page_55_Picture_4.jpeg)

### The effect of different acoustical treatment

![](_page_56_Picture_2.jpeg)

Volume= 150 m3, Floor area=55 m2, ceiling height=2,70 m

- No ceiling treatment, no furniture
- Ceiling treatment, no furniture
- Ceiling treatment, furniture
- Wall panels
- Extra low frequency absorption

![](_page_56_Picture_9.jpeg)

### Classroom in different configurations

![](_page_57_Picture_1.jpeg)

Without furniture and ceiling

![](_page_57_Picture_3.jpeg)

With furniture and ceiling

![](_page_57_Picture_5.jpeg)

Without furniture, with ceiling

![](_page_57_Picture_7.jpeg)

With furniture, ceiling and wall panels

![](_page_57_Picture_9.jpeg)

C Ecophon Group

## **Measurement positions**

![](_page_58_Figure_2.jpeg)

![](_page_58_Picture_3.jpeg)

### Without furniture and ceiling

![](_page_59_Picture_1.jpeg)

Average absorption coefficient of the room surfaces is 0,05

#### Speech Clarity C50 dB

![](_page_59_Figure_4.jpeg)

![](_page_59_Figure_5.jpeg)

Sound Strength G dB

![](_page_59_Figure_7.jpeg)

![](_page_59_Picture_8.jpeg)

### Practical absorption coefficient of Gedina A

![](_page_60_Figure_1.jpeg)

![](_page_60_Picture_2.jpeg)

### Without furniture with ceiling

![](_page_61_Figure_1.jpeg)

![](_page_61_Picture_2.jpeg)

### Without furniture with ceiling

![](_page_62_Figure_1.jpeg)

# Furniture absorption

T<sub>0</sub> empty room

![](_page_63_Picture_3.jpeg)

T<sub>furn</sub> furnished room

![](_page_63_Picture_5.jpeg)

$$A_{furn}=0,163V~(\frac{1}{T_{furn}}-\frac{1}{T_0})$$

![](_page_63_Picture_7.jpeg)

### With furniture and ceiling

![](_page_64_Figure_1.jpeg)

### With furniture and ceiling

![](_page_65_Figure_1.jpeg)

### The effect of wall panels

![](_page_66_Figure_1.jpeg)

## Ecophon Gedina A with Extra Bass

![](_page_67_Picture_2.jpeg)

![](_page_67_Picture_3.jpeg)

### The effect of extra low frequency absorption

With 50% Ecophon Extra Bass

![](_page_68_Figure_2.jpeg)

![](_page_68_Picture_3.jpeg)

### Wall panels and Ecophon Extra Bass

With 50% Ecophon Extra Bass

![](_page_69_Figure_2.jpeg)

Speech Clarity C50 dB

Sound Strength G dB

4000

![](_page_69_Figure_5.jpeg)

![](_page_69_Picture_6.jpeg)