

Acoustics (VTAN01) Build.Ac.3 - Analytical sound reduction models

NIKOLAS VARDAXIS DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

Outline

... recap (I)

• Airborne sound insulation measurements (ISO standards)

LUND UNIVERSITY

DEF: Coincidence – critical frequency (I)

- The wavelength of a bending wave λ_{B} is dependent on frequency, bending stiffness and mass density.
- When the wavelength of sound in air coincides with the structural wavelength → Coincidence phenomena
 - Radiation efficiency becomes very high
 - Poor insulation

DEF: Coincidence – critical frequency (II)

• Bending wave velocity in a plate

$$c_B = \sqrt{2\pi f} \sqrt[4]{\frac{B}{m''}}$$

• If $f = f_c$ thus $c_B = c_o = 340$ m/s (f_c = critical frequency)

$$f_c = \frac{c_0^2}{2\pi} \sqrt{\frac{m''}{B}}$$

• Or expressed as a function of the coincidence number

$$f_c = \frac{K}{h}$$

NOTE: The condition for coincidence is that $\lambda_B = \lambda \sin(\varphi)$. Therefore, if the incidence angle φ decreases, the coincidence frequency f_c increases according to $f_c(\varphi) = f_c/\sin^2(\varphi)$. The lowest frequency at which coincidence occur (critical frequency) occurs at the incidence angle $\varphi = 90^\circ$.

Critical frequency for common materials

• For a homogeneous isotropic plate of uniform thickness, the coincidence number is:

$$K = 60000 \sqrt{\frac{\rho}{E}}$$

Material	Coincidence number (K)	Thickness [m]	f_c [Hz]
Concrete	18	160	110
Light concrete	38	70	540
Gypsum	32	10	3200
Steel	12-13	1	12000
Glass	18	3	6000

Outline

Sound reduction index of single-leaf partitions (I)

• Exact method

- Region I: Stiffness-controlled region $(f < f_{11})$
- Region II: Mass-controlled region $(f_{11} < f < f_c)$
- Region III: Damping-controlled region ($f_c < f$)

Sound reduction index of single-leaf partitions (II)

Sound reduction index (dB)

- <u>Region I: Stiffness-controlled region</u> $(f < f_{11})$
 - Panel vibrates as a whole (considered thin)

$$R(f) = 10 \log\left(\frac{1}{K_s^2}\right) - 10 \log\left(\ln(1 + K_s^{-2})\right)$$
$$K_s(f) = 4\pi f \rho_F c_F C_s$$
$$C_s = \frac{768(1 - \nu^2)}{\pi^8 E h^3 \left(\frac{1}{a^2} + \frac{1}{b^2}\right)^2}$$

C_s: Mechanical compliance for a rectangular plate E: Young's modulus of the material the wall is made of h: wall thickness

a, b: plate dimensions

v

: Poisson's ratio of the wall

 $\begin{array}{ll} \rho_{F} & : \mbox{Density of the surrounding fluid (F), i.e. air} \\ c_{F}: \mbox{wave propagation speed in the fluid (F), i.e. air} \\ c_{Lplate} \mbox{ wave propagation speed in the plate (longitudinal wave)} \end{array}$

University

Sound reduction index of single-leaf partitions (III)

- <u>Region II: Mass-controlled region ($f_{11} < f < f_c$)</u>
 - Transmission loss independent of stiffness (controlled by mass inertia)
 - Some energy transmitted and part reflected at panel surface

NOTE: Although the above equation is valid for frequencies up to f_c , it yields only accurate results for $f \le 0.5f_c$. The mathematical expression around f_c is mathematically cumbersome and rarely used, its being the reason why approximate methods were developed.

Sound reduction index of single-leaf partitions (IV)

- Region III: Damping-controlled region ($f_c < f$)
 - Curve "dip" controlled by internal material damping
 - Important for design (low insulation)

$$R(f) = R(f_c) + 10\log(\eta) + 33.22\log\left(\frac{f}{f_c}\right) - 5.7dB$$

$$R(f_c) = 10 \log \left(1 + \left(\frac{\pi f_c m''}{\rho_F c_F} \right)^2 \right)$$

 η is the total loss factor or damping of the panel

Outline

Sound reduction index of single-leaf partitions (I)

- Approximate method
 - Region I: Mass-controlled region $(f < f_1)$
 - Region II: "Plateau" ($f_1 < f < f_2$)
 - Region III: Stiffness-controlled region ($f_2 < f$)

Hyphotesis: Infinite panel and diffuse field excitation

NOTE: f_1 and f_2 are not the resonance and coincident frequency explained in the exact method (see next slides)

Sound reduction index of single-leaf partitions (II)

- <u>Region I: Mass-controlled region</u> $(f < f_1)$
 - Transmission independent of panel stiffness

$$R(f) = 20\log(m'') + 20\log(f) - 20\log\left(\frac{\rho_F c_F}{\pi}\right) - 5dB$$

Sound reduction index of single-leaf partitions (III)

- <u>Region II: "Plateau"</u> $(f_1 < f < f_2)$
 - Governed by internal damping
 - Height of the plateau depends on material
 - f_1 and f_2 are the lower and upper limits of the plateau
 - » Calculated with expresions of adjoining regions

Material	Specific surface density (kg/m ² per cm)	Plateau height, R_P (dB)	$\Delta f_P = f_2 - f_1$ (octave)	Plateau breadth, frequency ratio, f_2/f_1
Aluminum	26.6	29	3.5	11*
Brick	21	37	2.2	4.5
Concrete, dense	22.8	38	2.2	4.5
Glass	24.7	27	3.3	10
Lead	112	56	2.0	4
Masonry block	11.4	30	2.7	6.5
Danse	11.7	32	3.0	8
Plywood, fir	5.7	19	2.7	6.5
Plaster, sand	17.1	30	3.0	8
Steel	76	40	3.5	11*

Table 4.2 Values of the plateau height (R_P) and plateau width (Δf_P) for the approximate method of calculation of the transmission loss for panels (partially after Watters, 1959).

* These materials have, in general, very low damping. The numbers are for a typical panel in place

** Hollow block. The values are determined for 6-in (150 mm) plastered block.

Sound reduction index of single-leaf partitions (IV)

- <u>Region III: Mass-controlled region</u> $(f_2 < f)$
 - Governed by stiffness of the panel

$$R(f) = R(f_2) + 33.22 \log\left(\frac{f}{f_2}\right)$$

NOTE: The slope of the expression (10 dB/octave) should just be used only for the 2 octaves above f_2 . For the following octaves, one should use a slope equal to 6 dB/octave, i.e. "20log(f/f_{2oct})" instead of "33.22log(f/f₂)", where f_{2oct} is the frequency where the 3rd octave above f_2 starts.

Outline

Introduction

- Double-leaf wall literature \rightarrow rather extensive
 - Theoretical analysis, less developed due to complexity

- Analyses often carried out using FEM, SEA.
- Several theoretical derivations of sound transmission
 - Double-leaf wall without mechanical coupling
 - Double walls with structural connections

Sound reduction index of double-leaf walls

$$\begin{bmatrix} L_{1} & L_{2} & L_{3} \\ R_{1} & R_{2} & R_{2} \end{bmatrix} R_{1} = L_{1} - L_{2} + 10 \log\left(\frac{S}{A_{2}}\right) R_{DoubleWall} = L_{1} - L_{3} + 10 \log\left(\frac{S}{A_{3}}\right) R_{2} = L_{2} - L_{3} + 10 \log\left(\frac{S}{A_{3}}\right) R_{DoubleWall} = R_{1} + R_{2} + 10 \log\left(\frac{A_{2}}{S}\right)$$

$$\Rightarrow R_{DoubleWall} = R_{1} + R_{2} + 10 \log\left(\frac{A_{2}}{S}\right)$$

• Approximate empirical model for a double leaf wall without structural connections, with cavity filled with porous absorber (Sharp 1978)

$$R = \begin{cases} R_M & ; f < f_0 \\ R_1 + R_2 + 20\log(f \cdot d) - 29dB & ; f_0 < f < f_d \\ R_1 + R_2 + 6dB & ; f > f_d \end{cases} \qquad f_0 = \frac{c}{2\pi} \sqrt{\frac{\rho_F}{d} \left(\frac{1}{m_1''} + \frac{1}{m_2''}\right)} \\ f_d = \frac{55}{L} \end{cases}$$

 R_M denotes the mass law with $M=m_1+m_2$ R_1 and R_2 denote the individual sound reduction index for each leaf d: distance between the two leaves i.e. (cavity thickness) **NOTE:** Diffuse field assumed in both rooms

d

Examples (I)

• Improvement in the sound reduction index of a double-leaf wall respect to a single wall, and also when including insulation in the cavity.

- ___ Dubbelvägg med hålrumsdämpning
- Dubbelvägg utan hålrumsdämpning
- *Enkelvägg med samma totala vikt som dubbelväggen*

Examples (II)

• Variation in the sound reduction index of a double-leaf wall when varying parameters in the cavity (inclusion of insulation and its thickness).

Examples (III)

Figur 4:24. Exempel på inverkan på det vägda reduktionstalet av avståndet mellan dubbelväggarna. Laboratoriemätresultat.

Examples (IV)

Figur 4:25. Exempel på inverkan på det vägda reduktionstalet av absorbent i spalten på dubbelvägg med separata reglar. Laboratoriemätresultat.

Examples (V)

Figur 4:26. Exempel på inverkan på det vägda reduktionstalet av olika förbindningar, reglar, i en dubbelvägg. Laboratoriemätresultat.

"Rule of thumb": decoupled structures perform much better \rightarrow acoustic bridges eliminated

Outline

Summary (III)

- Analytical calculation methods of reduction sound index
 - Single-leaf wall
 - » Exact method
 - » Approximate method *(not in exam)*
 - Double-leaf wall

Thank you for your attention!

nikolas.vardaxis@construction.lth.se

LUND UNIVERSITY