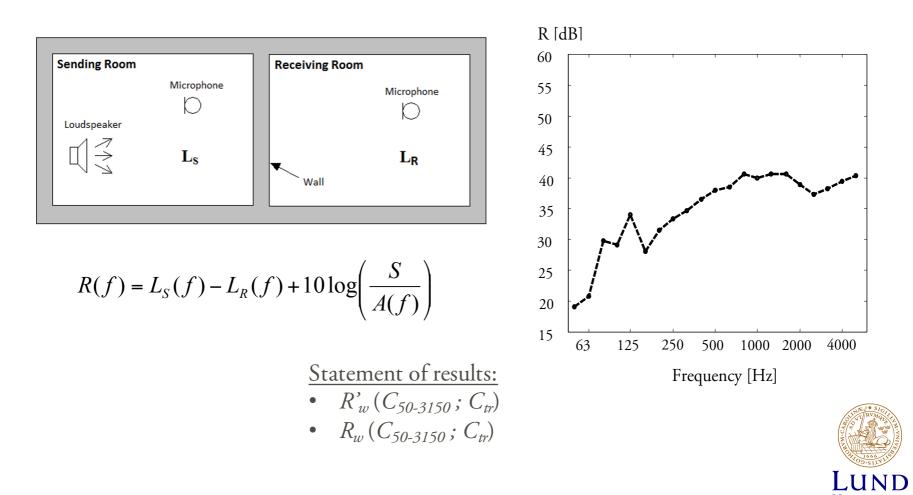
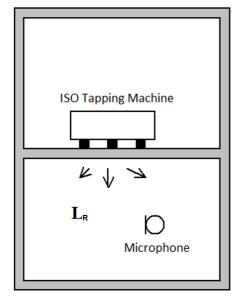


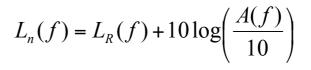
Acoustics (VTAN01) – Building Acoustics (2) Flanking Transmission


NIKOLAS VARDAXIS

DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY


... recap from last lecture (I)

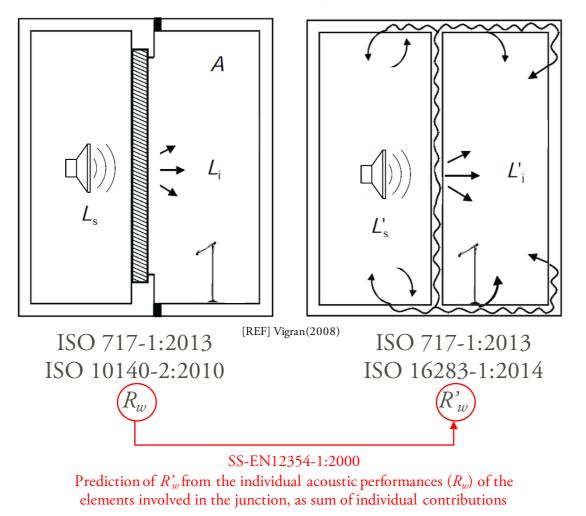
• Airborne sound insulation measurements (ISO standards)


UNIVERSIT

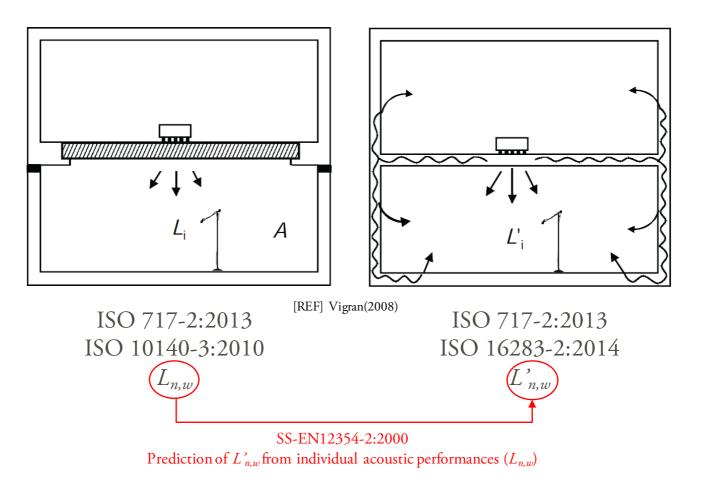

- ... recap from last lecture (II)
- Impact sound insulation measurements (ISO standards)

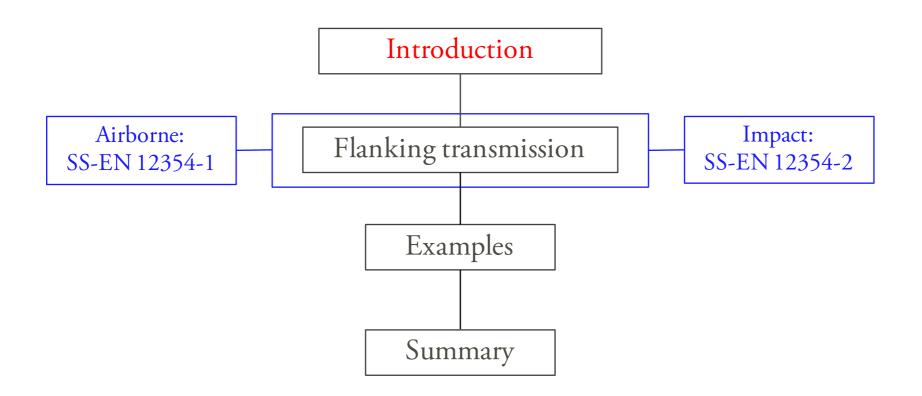
Statement of results:

- $L'_{nT,w}(C_{l,50-2500})$
- $L'_{n,w}(C_{l,50-2500})$
- $L_{n,w}(C_{l,50-2500})$



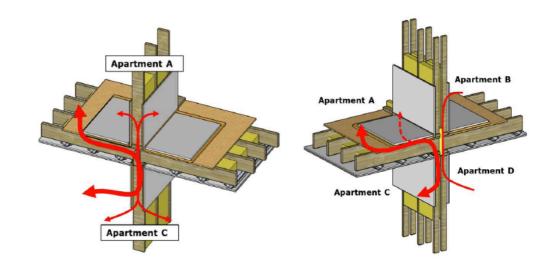
Remember...


... Laboratory vs. Field situation (flanking transmission comes into play)


Remember...

... Laboratory vs. Field situation (flanking transmission comes into play)

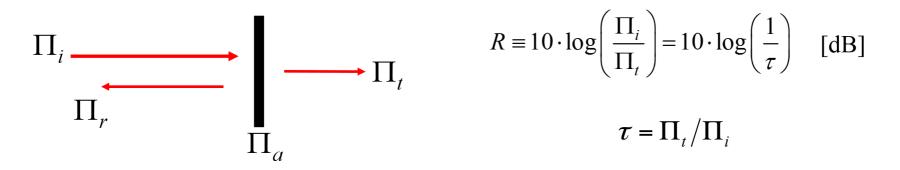
Outline


References: SS-EN 12354 series

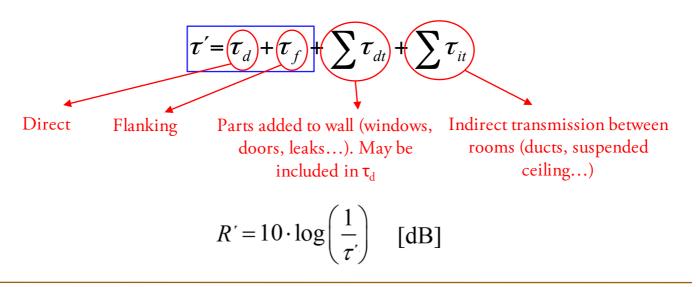
- SS-EN12354-1:2000, Building Acoustics– Estimation of acoustic performance of buildings from the performance of elements Part 1: Airborne sound insulation between rooms (2000).
- SS-EN12354-2:2000, Building Acoustics– Estimation of acoustic performance of buildings from the performance of elements Part 2: Impact sound insulation between rooms (2000).
- SS-EN12354-3:2000, Building Acoustics
 Estimation of acoustic performance of buildings from the performance of elements Part 3: Airborne sound insulation against outdoor sound (2000).
- SS-EN12354-4:2000, Building Acoustics
 Estimation of acoustic performance of buildings from the performance of elements Part 4: Transmission of indoor sound to the outside (2000).
- SS-EN12354-5:2000, Building Acoustics– Estimation of acoustic performance of buildings from the performance of elements Part 5: Sound levels due to service equipment (2000).
- SS-EN12354-3:2000, Building Acoustics– Estimation of acoustic performance of buildings from the performance of elements Part 6: Sound absorption in enclosed spaces (2000).

Introduction (I)

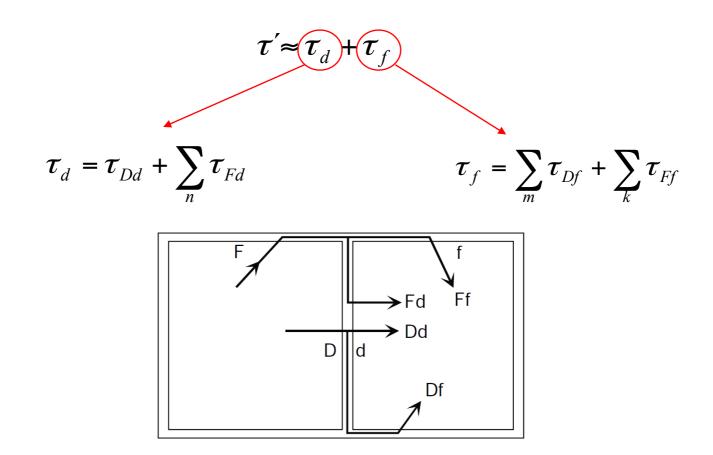
- Sound transmission
 - Airborne
 - Structure-borne
- Transmission paths
 - Direct transmission (D)
 - Flanking paths (F_i)



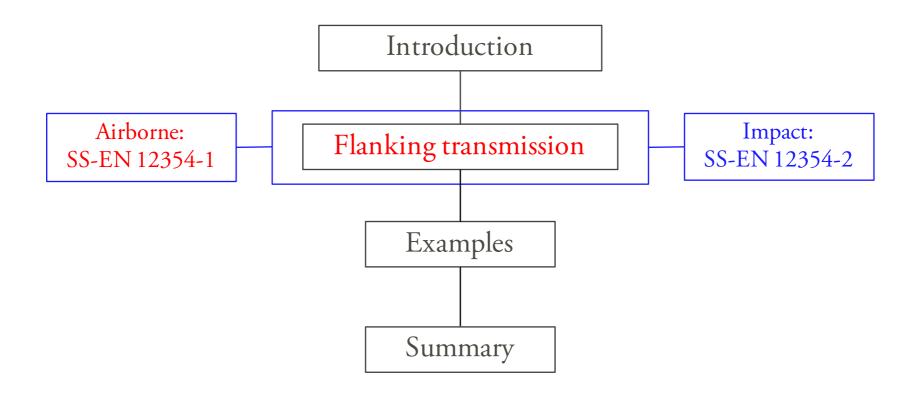
- Flanking: cause of problems related with acoustic comfort
 - Difference between lab and in-situ measurements ~4 dB
 - » Estimation methods described in SS-EN 12354:2000


- Acoustic performance as sum of individual contributions

Introduction (II)

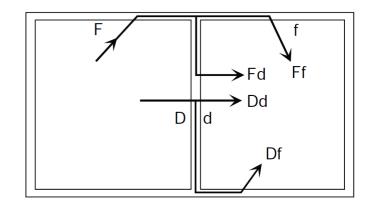


- Laboratory measurements \rightarrow good control \rightarrow "just" direct transmission
- In reality, more transmission paths


Introduction (III)

NOTES: The sketch only indicates first-order paths; paths involving one element in the sending room, one junction or connection and one element in the receiving room. // The number of elements *n*, *m* and *k* are normally 4. // Main contributions are normally the *Ff* paths.

Outline


Flanking transmission reduction index (I)

• Apparent sound reduction index (13 paths)

$$R'_{w} = -10\log\left[10^{\frac{-R_{Dd,w}}{10}} + \sum_{F=f=1}^{n} 10^{\frac{-R_{Ff,w}}{10}} + \sum_{f=1}^{n} 10^{\frac{-R_{Df,w}}{10}} + \sum_{F=1}^{n} 10^{\frac{-R_{Fd,w}}{10}}\right]$$

• If only *Ff* paths are assumed:

$$R'_{w} = -10\log\left[10^{\frac{-R_{d,w}}{10}} + \sum_{w} 10^{\frac{-R_{f,w}}{10}}\right]$$

Flanking transmission reduction index (II)

Flanking sound reduction index R_{ii} (approximation given in the standard SS-EN 12354-1)

$$\left(R_{f}\right)_{ij,w} = R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + K_{ij} + 10\log\left(\frac{S_{s}}{l_{0} \cdot l_{ij}}\right)$$

$$R_{i} \& R_{j} : \text{ sound reduction index of flanking element } i \text{ and } j$$

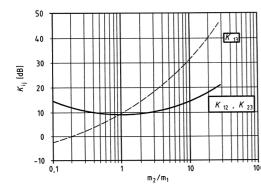
$$K_{ij} : \text{ vibration reduction index (junction dependent)}$$

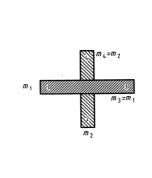
$$S_{s} : \text{ floor } / \text{ wall surface}$$

$$l_{0} = 1\text{ m}$$

$$l_{ij} : \text{ junction common length}$$

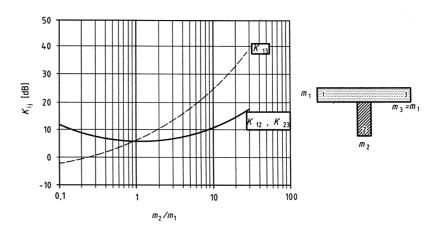
NOTES: K_{ii} is related to the vibrational power transmission over a junction between structural elements under diffuse field conditions, normalised in order to make it an invariant quantity (independent of the energy losses). This quantity can be taken from Annex E of SS-EN 12354-1. // An additional term $+\Delta R_{ii}$ would be added to the right hand side of the equation to account for improvement of sound reduction due to aditional linings (here is omitted).


 $l_0 = 1m$



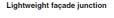
Flanking transmission reduction index (III)

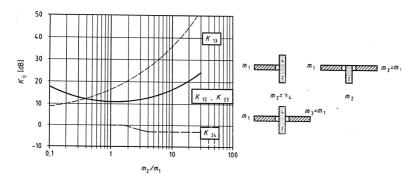
- Vibration reduction indices K_{ij}
 - SS-EN 12354-1:2000 (Annex E)



$$\begin{split} K_{13} &= 8.7 + 17.1 \text{ M} + 5.7 \text{ M}^2 \text{ dB }; \text{ 0 dB / octave} \\ K_{12} &= 8.7 + 5.7 \text{ M}^2 \; (= K_{23}) \text{ dB ; 0 dB / octave} \end{split}$$

Rigid T-junction

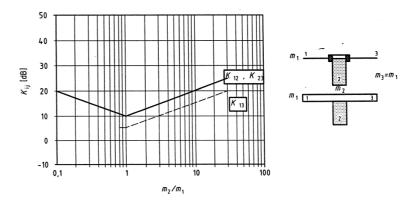

$$\begin{split} & K_{13}{=}\;5.7{+}\;14.1\;\mathrm{M}{+}\;5.7\mathrm{M}^{2}\mathrm{dB}{\,;}\;0\;\mathrm{dB}{\,/}\;\mathrm{octave} \\ & K_{12}{=}\;5.7{+}\;5.7\;\mathrm{M}^{2}({\,=}\;K_{23}{\,)}{\,}\mathrm{dB}{\,;}\;0\;\mathrm{dB}{\,/}\;\mathrm{octave} \end{split}$$



Flanking transmission reduction index (IV)

- Vibration reduction indices K_{ij}
 - SS-EN 12354-1:2000 (Annex E)

Wall junction with flexible interlayers


 $K_{13} = 5,7 + 14,1 \text{ M} + 5,7 \text{ M}^2 + 2 \Delta_1 \text{ dB}$

 $K_{24} = 3.7 + 14.1 \,\text{M} + 5.7 \,\text{M}^2 \,\text{dB}$; $0 \le K_{24} \le -4 \quad \text{dB}$; $0 \,\text{dB}$ / octave

 $K_{12} = 5.7 + 5.7 \text{ M}^2 + \Delta_1 (= K_{23}) \text{ dB}$

$$\Delta_1 = 10 \lg \frac{f}{f_1} \text{ dB for } f > f_1$$

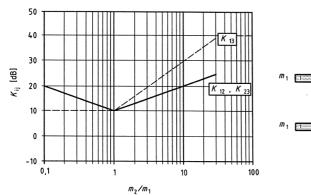
 $f_1 = 125 \text{ Hz if } \frac{E_1}{t_1} \approx 100 \text{ MN/m}^3$; see text

 K_{13} = 5 +10 M dB and minimum 5 dB ; 0 dB / octave

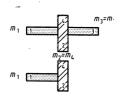
 $K_{12} = 10 + 10 | M (= K_{23}) dB$; 0 dB / octave

 $a_{\text{facade,situ}} = S_{\text{facade}} / l_{\text{o}}$

Flanking transmission reduction index (V)


- Vibration reduction indices K_{ij}
 - SS-EN 12354-1:2000 (Annex E)

 $K_{13} = 10 + 20 \text{ M} - 3.3 \text{ lg} \frac{f}{f_{\text{k}}} \text{ dB and minimum 10 dB}$


 $K_{12} = 10 + 10 \left| \mathsf{M} \right| - 3.3 \, \mathsf{lg} \frac{f}{f_{\mathsf{h}}} \, \mathsf{dB} \left(= K_{23} \right)$

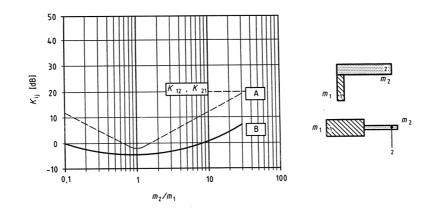
 $f_{\rm k} = 500 \, \text{Hz} \quad a_{\rm situ} = S/l_{\rm o}$

 m_1 $m_3 = m_1$ $m_2 = m_4$ m_1 m_1 m_2

Junction of lightweight double leaf wall and homogeneous elements

- K_{13} = 10 + 20 M 3,3 lg $\frac{f}{f_k}$ dB and minimum 10 dB
- $K_{24} = 3,0 14,1 \text{ M} + 5,7 \text{ M}^2 \text{ dB}; \frac{m_2}{m_1} > 3; 0 \text{ dB} / \text{octave}$

$$K_{12} = 10 + 10 |\mathsf{M}| + 3.3 \lg \frac{f}{f_k} d\mathsf{B} (= K_{23})$$


 $f_{\rm k}$ = 500 Hz $a_{\rm lightweight wall,situ} = S_{\rm lightweight wall} / l_{\rm o}$

Flanking transmission reduction index (VI)

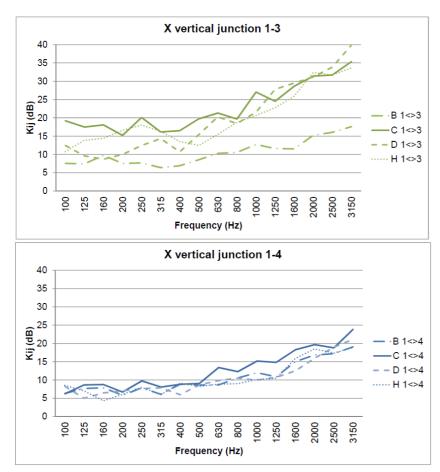
- Vibration reduction indices K_{ij}
 - SS-EN 12354-1:2000 (Annex E)

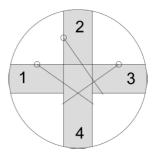
Corner or thickness change

A Corner :

 $K_{12} = 15 |M| - 3 dB and minimum - 2 dB (= K_{21}); 0 dB / octave$

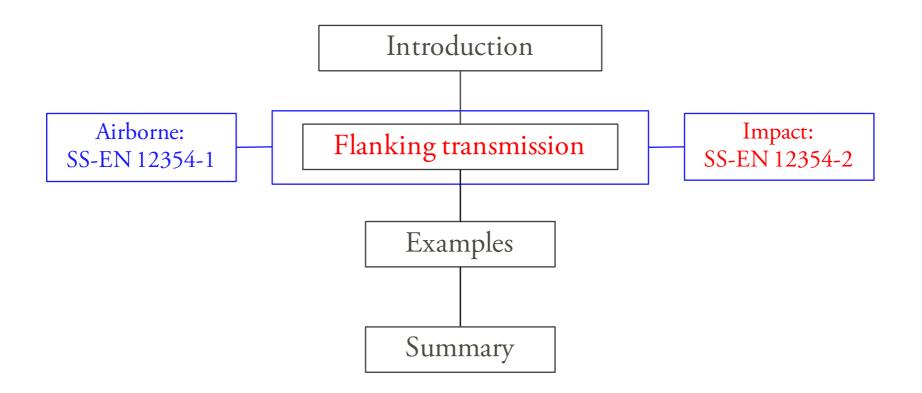
B Change :


 $K_{12} = 5 \text{ M}^2 - 5 \text{ dB} (= K_{21}); 0 \text{ dB} / \text{octave}$


Other experimental K_{ij}

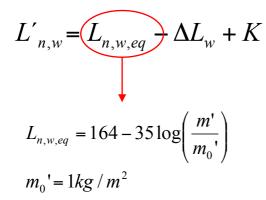
• "X" CLT junction (example)

- 4 configurations



Source: Barbaresi (2016)

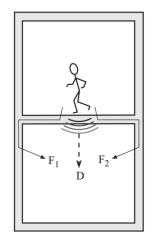
Outline



Impact sound with flanking transmission (I)

• Impact sound pressure level in the receiving room

$$L'_{n} = 10\log\left[10^{\frac{L_{n,d}}{10}} + \sum_{j=1}^{n} 10^{\frac{L_{n,jj}}{10}}\right]$$


• If the SS-EN 12354-1 simplified model is assumed, the weighted normalised impact sound pressure level is:

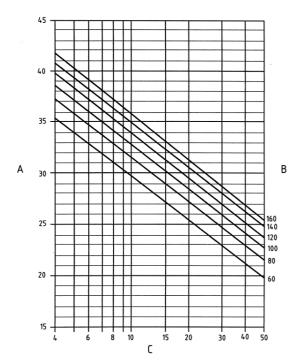
 $L_{n,w,eq}\!\!:$ equivalent weighted normalised impact sound pressure level of the floor base (Annex B)

 ΔL_w : weighted reduction of impact sound pressure level of the floor covering (obtained according to EN ISO 717-2:1996) and given in Figures in the Standard.

NOTES: K is the correction for impact sound transmission over the homogeneous flanking constructions in decibels, and it is given in a tabular form in the standard. // Limitations: the simplified model is only applied to homogeneous building constructions with floating floors or soft coverings on a homogeneous constructions, and only for rooms one above each other which are of conventional sizes in dwellings.

Impact sound with flanking transmission (II)

Mass per unit area of the separating element (floor) in	Mean mass per unit area of the homogeneous flanking elements not covered with additional layers in								
kg/m²		kg/m²							
	100	150	200	250	300	350	400	450	500
100	1	0	0	0	0	0	0	0	0
150	1	1	0	0	0	0	0	0	0
200	2	1	1	0	0	0	0	0	0
250	2	1	1	1	0	0	0	0	0
300	3	2	1	1	1	0	0	0	0
350	3	2	1	1	1	1	0	0	0
400	4	2	2	1	1	1	1	0	0
450	4	3	2	2	1	1	1	1	1
500	4	3	2	2	1	1	1	1	1
600	5	4	3	2	2	1	1	1	1
700	5	4	3	3	2	2	1	1	1
800	6	4	4	3	2	2	2	1	1
900	6	5	4	3	3	2	2	2	2


Table 1 - Correction K for flanking transmission in decibels

If one or more massive flanking constructions are covered by additional layers (wall lining) with a resonant frequency $f_0 < 125$ Hz according to D.2 of EN 12354-1 : 2000 the surface masses of the covered elements are not considered in the calculation of the mean mass value.

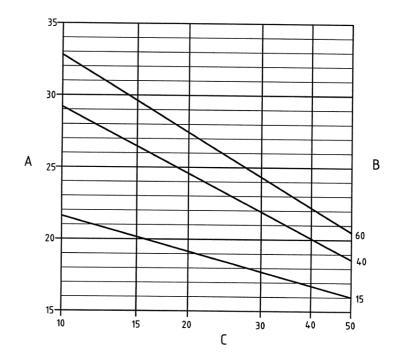
NOTE In principle a correction term K to express the contribution of flanking transmission could also be derived for other room configurations than rooms above each other.

Impact sound with flanking transmission (III)

Legend

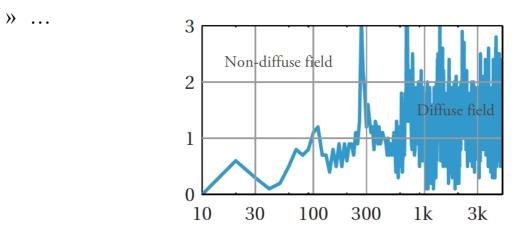
- A Weighted impact sound reduction index ΔL_w in dB
- B Mass per unit area of the floating floor in kgm⁻²
- C Dynamic stiffness per unit area s' of the resilient layer in MNm⁻³

Figure C.1 - Weighted reduction of impact sound pressure level for floating floor screeds made of sand/cement or calcium-sulphate


Legend

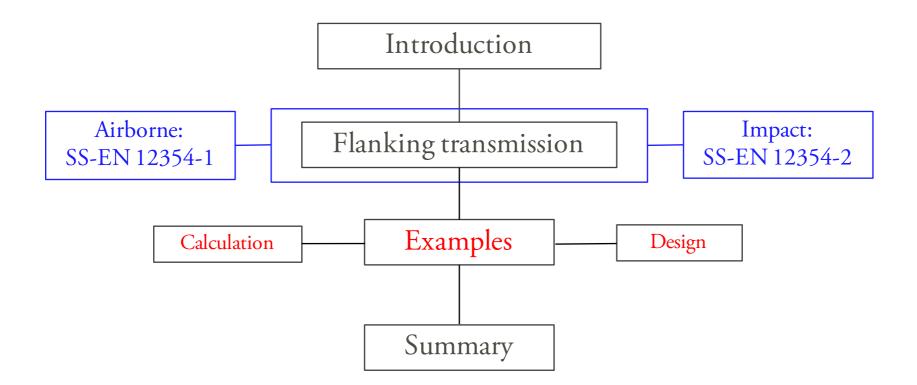
- A Weighted impact sound reduction index ΔL_w in dB
- B Mass per unit area of the floating floor in kgm⁻²
- C Dynamic stiffness per unit area s' of the resilient layer in MNm⁻³

Figure C.2 - Weighted reduction of impact sound pressure level for asphalt floating floors or dry floating floor constructions

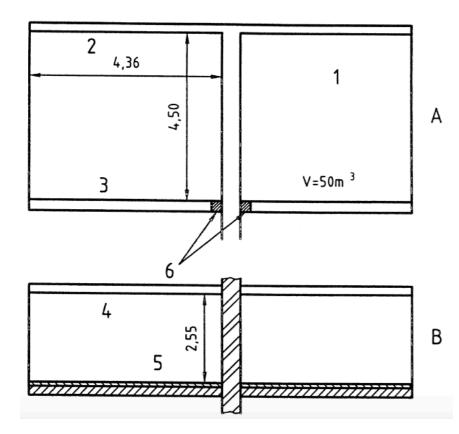


NOTES: The weighted reduction of impact sound pressure level ΔL_w depends on the mass per unit area *m*' of the floating floor and the dynamic stiffness per unit area *s*' of the resilient layer according to EN 29052-1

Some comments about SS-EN 12354:2000


- The standard describes a simplified statistical energy analysis (SEA) model to predict R'_w and $L'_{n,w}$
 - Lightweight elements typically don't meet the requirements of an SEA subsystem:
 - » Vibratory fields show large variances (lack of diffuseness)
 - » Low modal density at low frequencies

• The latter may result in inaccurate predictions when using SS-EN 12354:2000 applied to wooden lightweight constructions



Outline

Calculation example 1 (SS-EN 12354-1:2000)

Key

A Ground plan

B Sectional view

Separating element :

1 wall 4,50 m \times 2,55 m = 11,5 m²; 200 mm concrete, 460 kg/m².

Flanking elements (identical on both sides) :

2	Façade :	4,36 m \times 2,55 m = 11,1 m 2 ; rigid T junction ;
		100 mm calcium-silicate blocks, 175 kg/m ² .
3	Internal wall :	4,36 m \times 2,55 m = 11,1 m 2 ; cross junction with elastic layer ;
		70 mm gypsum blocks, 67 kg/m ² .
4	Ceiling :	4,36 m \times 4,50 m = 19,6 m 2 ; rigid cross junction ;
		100 mm concrete, 230 kg/m ² .
5	Floor :	4,36 m \times 4,50 m = 19,6 m 2 ; rigid cross junction ;
		100 mm concrete / 30 mm finish, 287 kg/m ² .
0	Alexale a second address	

6 flexible connection

Calculation example 1 (SS-EN 12354-1:2000)

• Data:

INPUT DATA :	ELEMENTS		JUNCTIONS			
	<i>m</i> '	$R_{\rm w}$ (dB)	m's/m'f	K _{Ff} (dB)	K _{Fd} (dB)	K _{Df} (dB)
	(kg/m ²)	Annex B			Ann	ex E
Wall (s)	460	57				
Floor ($F = f = 1$)	287	49	1,61	12,4	8,9	8,9
Ceiling ($F = f = 2$)	230	46	2,00	14,4	9,2	9,2
Façade (F = f = 3)	175	42	2,63	12,6	6,7	6,7
Internal wall $(F = f = 4)$	67	33	<mark>6,</mark> 97	33,5	15,7	15,7

• Solution:

Wall :	R _{Dd}	= 57,0 dB			Ceiling :	R _{D2}	= 46/2 + 57/2	+ 9,2 + 4,1	= 64,8 dB
	R _{1d}	= 49/2 + 57/2	+ 8,9 + 4,1	= 66,0 dB		R ₂₂	= 46	+ 14,4 + 4,1	= 64,5 dB
	R _{2d}	= 46/2 + 57/2	+ 9,2 + 4,1	= 64,8 dB	Façade :	R _{D3}	= 42/2 + 57/2	+ 6,7 + 6,5	= 62,7 dB
	R _{3d}	= 42/2 + 57/2	+ 6,7 + 6,5	= 62,7 dB		R ₃₃	= 42	+ 12,6 + 6,5	= 61,1 dB
	R _{4d}	= 33/2 + 57/2	+ 15,7 + 6,5	= 67,2 dB	Internal wall :	R _{D4}	= 33/2 + 57/2	+ 15,7 + 6,5	= 67,2 dB
Floor :	R _{D1}	= 49/2 + 57/2	+ 8,9 + 4,1	= 66,0 dB		R ₄₄	= 33	+ 33,5 + 6,5	= 73,0 dB
	<i>R</i> ₁₁	= 49	+ 12,4 + 4,1	= 65,5 dB					

Total (equation (26)) $R'_{w} = 52.2 \approx 52 \text{ dB}$

Calculation example 2 (SS-EN 12354-2:2000)

• Task:

The impact sound pressure level L'_n between two dwellings is to be calculated for two rooms above each other, separated by a concrete floor slab covered with a floating floor. The volumes of the rooms are 50 m³, the other construction details are given below.

Separating element :

floor	$S_i = 5,00 \text{ m x } 4,00 \text{ m} = 20,0 \text{ m}^2$;				
	140 mm concrete, $m' = 0,14 \text{ m x} 2300 \text{ kg/m}^3 = 322 \text{ kg/m}^2$;				
floating floor :	35 mm concrete on 20 mm mineral wool slab with $s' = 8 \text{ MN/m}^3$.				
Flanking elements (identical on both sides) :					
internal walls	$S_{j} = 5,00 \text{ m x } 2,50 \text{ m} = 12,5 \text{ m}^{2}$; rigid cross junction ;				
	120 mm aerated concrete, $m' = 0,12 \text{ m x } 800 \text{ kg/m}^3 = 96 \text{ kg/m}^2$;				
external walls	$S_{j} = 4,00 \text{ m x } 2,50 \text{ m} = 10,0 \text{ m}^{2}$; rigid T junction ;				
	100 mm brickwork, $m' = 0,1$ m x 1900 kg/m ³ = 190 kg/m ² .				

Calculation example 2 (SS-EN 12354-2:2000)

• Solution:

- equivalent weighted normalized impact sound pressure level of the concrete floor slab : from annex B :

 $L_{n,w,eq} = 164 - 35 \, \lg(m'/m'_o) \text{ with } m'_o = 1 \, \lg/m^2$ = 164 - 35 $\lg(322/1) = 76.2 \, dB \approx 76 \, dB$

— weighted impact sound improvement index of the floating floor :

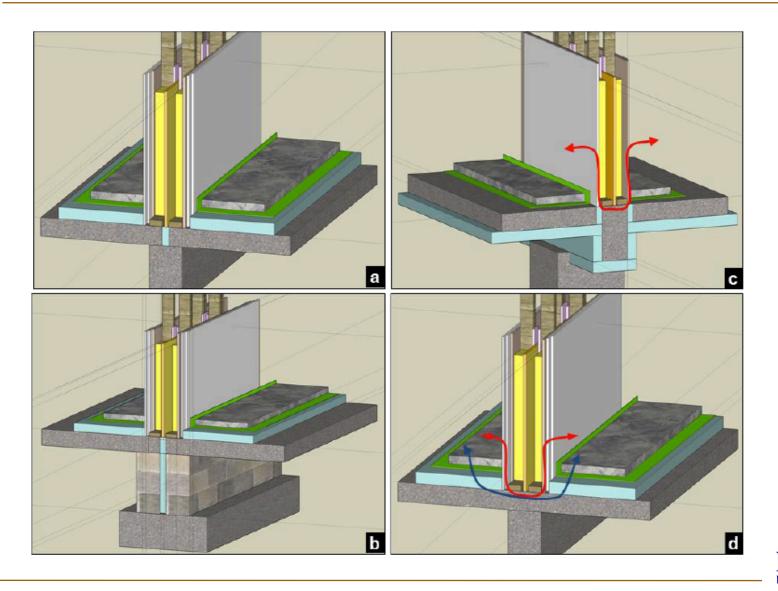
with the dynamic stiffness per unit area $s' = 8 \text{ MN/m}^3$ of the mineral wool slab and the mass per unit area $m' = 80 \text{ kg/m}^2$ of the floor screed follows from Figure C.1 :

 $\Delta L_{\rm w} = 33 \text{ dB}$

— correction *K* for flanking transmission :

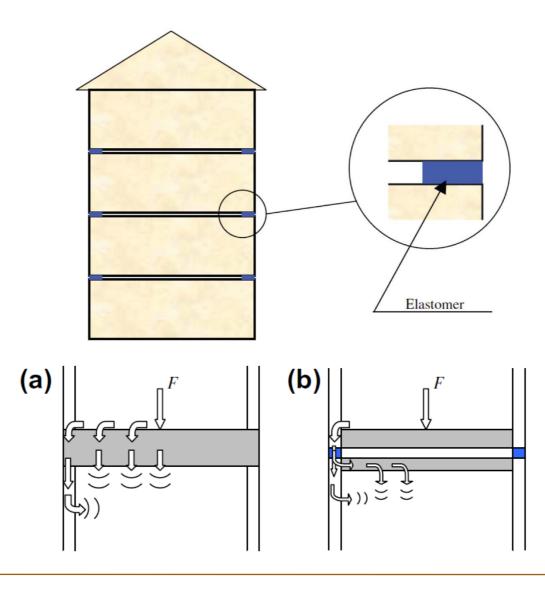
mean surface mass of the homogeneous flanking elements, not covered with resilient layers, $m' = 0.25 [(2 \times 190) + (2 \times 96)] \text{ kg/m}^2 = 145 \text{ kg/m}^2$; so from Table 1 :

K = 2 dB


- weighted normalized impact sound pressure level between the two rooms :

from equation (21) :

 $L'_{n,w} = L_{n,w,eq} - \Delta L_w + K = (76 - 33 + 2) dB = 45 dB$



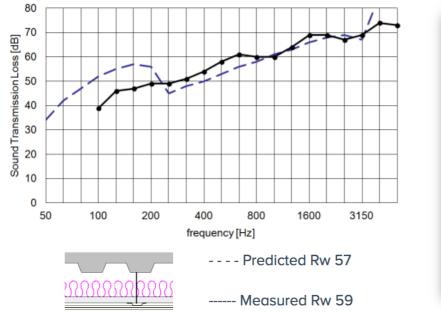
Design example: decoupling structural elements

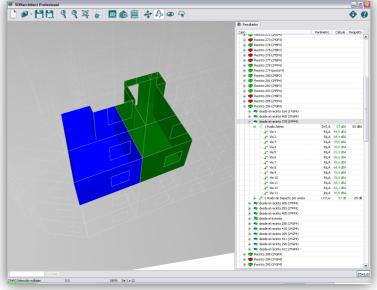
Design example: timber volume elements

Design example: elastic interlayers

Prediction

- Is it posible to predict vibroacoustic performance of buildings?

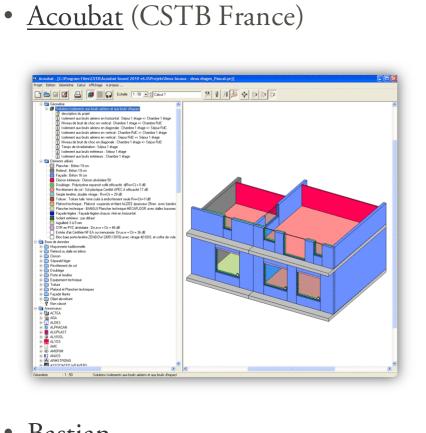

We slowly know more and more but... ... still many things left to be done, especially in the woodenn constructions...

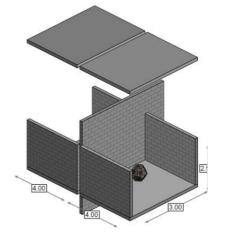


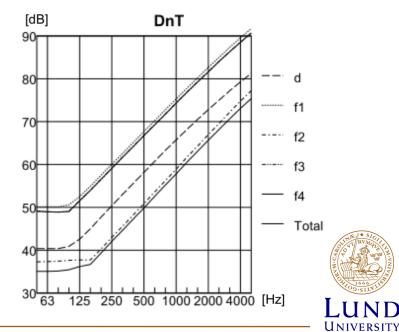
Prediction: commercial software (I)

• <u>Insul</u>

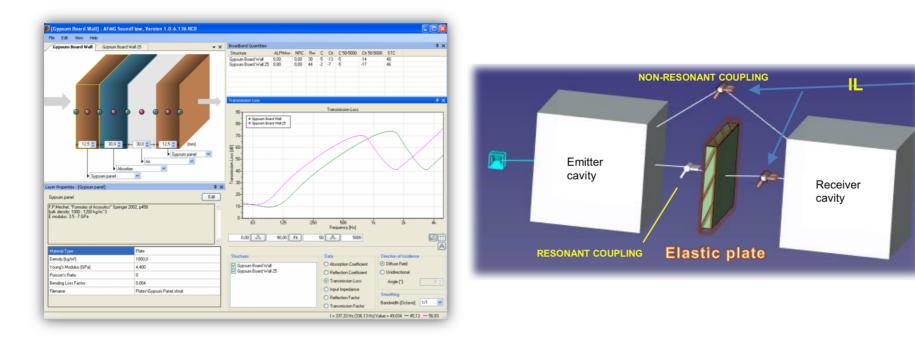
 Example: Composite Steel floor (Hibond) 120mm thick with suspended light steel grid with 2 layers of 13mm fire rated plasterboard. 75mm fibreglass blanket in the cavity.






• <u>Son-Architect</u> (ESP)

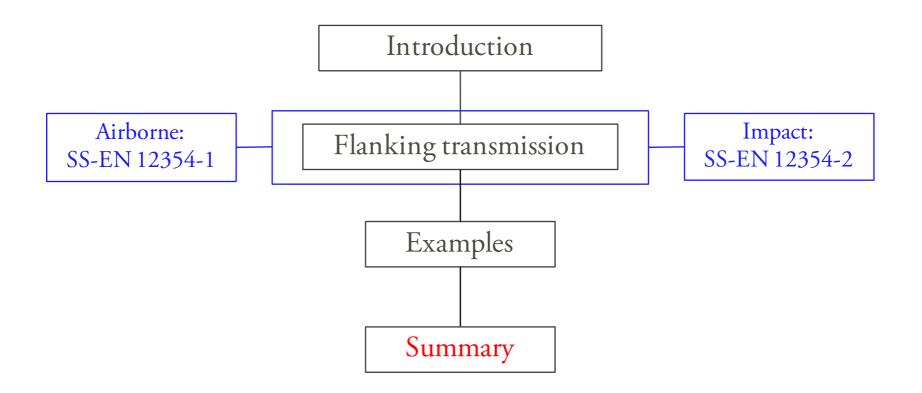
Prediction: commercial software (II)



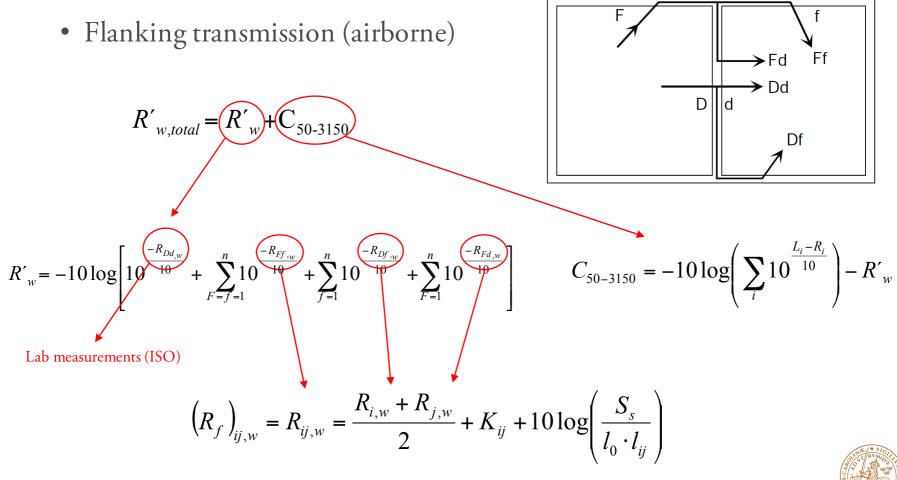
• <u>Bastian</u>

– No update since a while ago (?)

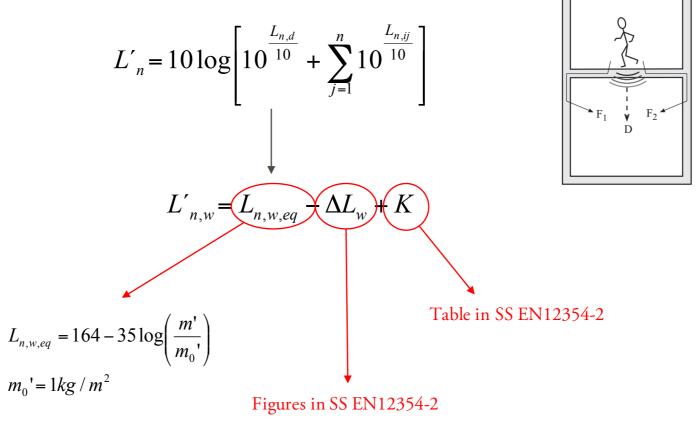
Prediction: commercial software (III)


<u>AFMG Soundflow</u>

- <u>SEA-Wood</u>
 - Works good for airborne sound (less well for impact)
 - not very adapted to engineers yet



Outline


Summary (I)

Summary (II)

• Flanking transmission (impact)

Thank you for your attention!

nikolas.vardaxis@construction.lth.se

LUND UNIVERSITY