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adverse effects (Y-axis); e.g., percentage of the people expressing annoyance or
satisfaction.

It has also been tried to establish dose-response relationships between
airborne sound insulation or impact sound pressure level and the percentage of
people being annoyed by noise from neighbours. For example, as the acoustic
requirement increases, the percentage of satisfied people increases, and
dissatisfied people decrease, and so on. Several of the most reliable results show
an average slope (i.e., between acoustic requirement and satisfaction level of
exposed people) around 4 % per dB (Rindel, 1998). For instance, an increase of
5 dB in the acoustic requirements indicates that the percentage satisfied people
will go up by 20, and percentage dissatisfied people will go down by 20. These
results can be further used to assess the acoustic quality level of a certain set of
sound insulation requirements, or they may be used as a basis for specifying the
desired acoustic quality of new buildings. Approximately, the same slope is
found when linear regression has a high correlation for airborne neighbour noise,
impact noise from neighbour and noise from heating or plumbing (or traffic). It is
suggested that the level of acoustic requirements for dwellings may be deemed
“acceptable” when for R,’ =56 dB, L,,’ =57 dB, L, (heating) = 32 dB, since
50% of exposed people evaluate as good and 20 % as poor. It can be further
deemed “satisfactory” when for R’ ~ 60 dB, L,,’ =52 dB, L, (heating) =27 dB
since 70% of exposed people evaluate as good (Rindel, 1998).

For transportation noise, the dose-response relationships can indicate the
relationship between the percentage “highly annoyed” and the noise exposure
level have been produced. From a statistical point of view, the noise exposure
level can account for 70% of the variance in annoyance, at the community level.
However, at the individual level, the variance in annoyance due to noise exposure
is typically only about 20% (Berglund et al, 2000). The world health organisation
(WHO, 1980) suggested that the bedroom noise level should not exceed 35
dB(A) to “preserve the restorative process of sleep”. This figure have
subsequently been revised down to 30 dB(A), to ensure that negative effects on
sleep are avoided (Berglund et al, 2000). There is also recognition that short lived
noisy events could have an effect on the sleeping process, and recommends a
maximum level of 45 dB(A) not to be exceeded in bedrooms; see also European
Commission (2002).

Obviously, the abovementioned results can not be made universal since the
satisfaction level of exposed people can vary according the time and location
under concern. Therefore, it is recommended that the acoustic requirements be
updated on a continuous basis, taking into account the dose-response
relationships for the region, under concern.

Chapter 4

Airborne Sound Insulation

In sound insulation, one must consider the many paths that sound can take from
one room to another: (a) direct path: sound passes through common partition; (b)

flanking: sound passing around common partition, e.g. along roof rafters ; and (c)
structure-borne: direct vibration of structure by source (e.g. boiler pumps), sound
passes through structure. One procedure for noise control is to provide an
acoustic barrier or partition to reduce the transmission of sound. For design
purposes, one must be able to predict the transmission loss (sound reduction
index) for the partition over a wide range of frequencies. In this chapter, it is
attempted to examine the general case of airborne sound transmission through a
panel or partition; particularly, the direct path of airborne sound transmission.
The other paths will be further examined is the subsequent chapters.

4.1 Background

The sound insulation of a partition is determined, by its properties, the attached
constructions, and the nature of partition’s boundary conditions. In addition, the
parameters of the incident sound energy play also an important role in the
calculation of the sound insulation. It should, however, be observed that the
influence of the connected or attached constructions can be big. A measurement
of the construction’s sound insulation can, therefore, be misleading for the
insulation, which occurs in- situ (at the field). To some extent, a consideration
can be taken to the connected constructions in the calculations; this is why the
calculated values can be more secure than the lab measurement. This is
especially for the case of heavy constructions. Ignoring flanking and leakage, the
basic mechanism of sound transmission through a wall is that sound in the source
room forces the exposed surface to vibrate; this vibration is transmitted through
the structure of the wall to the other surface, which in turn vibrates producing
sound in the receiving room. If the two surfaces of the wall are rigidly connected
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so that they vibrate as a unit (e.g., a single-leaf partition), the transmission loss or
sound reduction depends only on the frequency and the mass per unit area,
stiffness, and intrinsic damping of the wall. If the partition consists of two
unconnected walls separated by a cavity (a double-leaf partition), the
transmission loss depends mainly on the properties of the two walls and on the
size of the cavity and its absorption. By considering some common panel
constructions, techniques for estimation of the sound reduction index, R
(= transmission loss, TL) curve, are presented.

The material presented in this chapter applies for transmission of sound
through panels (e.g. a plate of glass, brick, wood, concrete, etc.) of homogenous
or inhomogeneous materials, of infinite or finite size, of isotropic or orthotropic
properties. Note that double constructions can include also e.g., double glazing
windows, double doors constructions and not only the “conventional” walls or
floors.

In many cases in building acoustics practice, the panels are considered thin, of
constant thickness and infinite extent in which the panel responds to a bending
forced vibration (covering the framework); further, the panel material is
homogeneous and isotropic. For the panels to be considered thin, the bending
wavelength of the forced bending vibration of the plate is at least six times the
panel thickness; see Chapter 2. For the panels to be considered to be of infinite
extent, the lateral dimensions must be much greater than the bending wavelength
of the forced vibration. The case of plate of inhomogeneous material and
orthotropic geometry is treated in Sec. 4.7 whilst the case of finite thick plate as
well as thin plate of finite size is treated in Sec. 4.8, and finally the case of
infinite thick plate is treated in Sec. 4.9. In addition, for the cases treated in this
chapter, flanking transmission is not considered in developing the prediction
schemes. The case of flanking transmission is treated separately in Chapter 6.

4.2 Sound Reduction Index (Transmission Loss) of Single-Leaf Partitions

For the general case, when an acoustic wave travelling in one medium encounters
the boundary of a second medium, reflected and transmitted waves are generated.
For example, when sound strikes upon a solid partition, part is reflected, part
absorbed within the material, and part transmitted to the other side or to
elsewhere in the building, as discussed in Chapter 2. When a partition is stroke
by an airborne (plane) sound wave, i.e., longitudinal wave, the ratios of the
pressure amplitudes and intensities of the reflected and transmitted waves to
those of the incident waves depend technically on the following factors: angle of
incidence, ¢; densities of the two media; and speeds of sound in the two media.
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Physically, sound attenuation or transmission loss in ordinary building materials
is the result of an interplay between mass, stiffness and damping. In many cases
in practice, a diffuse sound field in the room is assumed, and that the sound
insulation is analysed between two rooms of normal size.

The general variation of the sound reduction index with frequency for a
homogeneous infinite partition is shown in Fig. 4.1. As can be seen, there are
three main regions of behavior for the wall or panel:

(a) Region I: Stiffness-controlled region
(b) Region II: Mass-controlled region
(c) Region I1I: Damping-controlled region (upper stiffness region)

Note, however, that the boundaries between these regions are approximate,
especially with respect to the prediction methods. For instance, the mass
controlled region can start effectively at frequencies well above the lowest
resonance frequency, fi1. Further, the mass-controlled region can extend up to the
coincidence region as the mass law is affected by resonance at lower frequencies
and coincidence at higher frequencies.
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Fig. 4.1 Approximate behaviour of sound reduction index (or transmission loss) of a thin
homogenous single wall, of infinite size. Distinct regions showing the way a single leaf solid
partition will react to different frequency sounds, £, is the wall’s critical frequency, i, is the wall’s
lowest eigen frequency. The boundaries between the main regions (I, I1, III) are approximate.




352 Building Acoustics and Vibration: Theory and Practice

Instructively, the behaviour of transmission loss of an infinite plate in the whole
frequency domain is complicated and the prediction methods are simplified and
approximated; see also Sec. 4.9.

4.2.1 Region I: Stiffness-controlled region

At low frequencies, the wall or plate can be considered as very thin and so it
vibrates as a whole. The sound transmission through the plate (or panel) depends
mainly on the stiffness of the wall, while damping and mass having little effect,
especially in the lower stiffness region.

Consider the plate shown in Fig. 4.2 in which the medium is the same on both
sides (air) of the plate, and the panel is very thin. The expressions for the acoustic
pressure and particle velocity on each side of the plate may be written as follows
(see Sec. 2.9, Chapter 2):

p(x.)=(p, e+ p,_e)e!” 4.1
P,y (x,t) = p,.e el 4.2)
v (60 =1/ poe)(pe ™ = pe’™)e (4.3)
v, (x,8) = (1/ pyc) p, e~ e’ (4.4)

where p; is the air density, and ¢ the sound speed in air.

Pl+e7jkx
Incident wave g

P2+e7jkx
p, e ——# Transmitted wave
Reflected wave ¢———

Fig. 4.2 Vibration of a plate in the stiffness-controlled region due to normal incidence of sound
wave. The quantity V(?) is the vibration velocity of the whole plate.
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At the surface of the panel, x = 0, the particle velocities are both equal to the
instantaneous vibration velocity of the plate, V(#): V(#) = v4(0,) = v2(0,f). Thus, it
follows from Eq. (4.1)-Eq. (4.2) that:

Py — P =Pay and V()= p2+ejwt /poc (4.5a,b)

In general, the plate and the surrounding medium may be modelled at very low
frequencies, as a simple mass-spring system. The governing equation of motion
for this system is expressed by Eq. (11.3) (Chapter 11). Eq. (11.3) may be
rewritten in terms of plate velocity as

Foy=mY s r vy i, IV(t)dt (4.6)
dt

n

The quantity r, is the coefficient of viscous damping or the mechanical
resistance, m is the mass, F is the applied force on the plate, and k; is the stiffness
constant. Assume sinusoidal excitation by force Foe', so the velocity is also
sinusoidal, and Eq. (4.6) may be simplified as:

kX

jo

F=jomVt)+r,V({)+—V() @.7
Since the damping and mass has little effect, especially in the region below the
first or fundamental resonant frequency, fj, (the lower stiffness region), in
comparison to the stiffness, it follows that Eq. (4.7) will only contains the term
with k,:

F=by 4.8)

jo
Thus, the reaction of plate to the net (acoustic) forces acting on it is only
represented by the spring force of the plate, F, assuming that the plate has a finite
stiffness, k,; see also Fig. 11.1, Chapter 11. Consequently, substituting Eq. (4.5b)
into Eq. (4.8), and applying a force balance at the surface of the plate, the result
becomes:

ksp!-r-ejax
Jjapgc
The stiffness, k,, is here in unit area of the plate (SI unit: N/m3). The latter

expression may be simplified by replacing the acoustic pressure forces with Eqs.
(4.1) and (4.2):

P00 = p(0,1)=~F = (4.9)

ik,
D, t P~ Pyu ™ +——J sPar 4.10)
wpyC

Now, combining Eq. (4.5a, b) with Eq. (4.10) will result in:
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Pae _ 1=k, /20040)
P 1+(k,[2ap,c)°
The sound power transmission coefficient for normal incidence is defined as the

ratio of the transmitted acoustic power I, to the incident acoustic intensity I;,, at
the same interface (see Sec. 2.9.6). Accordingly,

.11

|2

I, =\p,,-|2=\pz+ _ 1
I, |Pm‘ |P1+| 1+(k.y/2a)poc)2

The sound reduction index for normal incidence, R,, may now be written as
follows:

T =

n

(4.12)

2ap ¢
k

S

R, =10log(l/z,)=10log(t+K.*), K, = (4.13a,b)
The previous case is derived on the assumption that there is a normal incident
wave striking a wall. If one follows the analysis for the oblique incidence of the
sound wave, as developed in Sec. 2.9.7, it an be shown that the sound power
transmission coefficient for an angle of incidence, ¢, is obtained:

1

{ ks Jz
1+| cosg
2awp,c

At @= 0 (normal incidence), Eq. (4.14) reduces to Eq. (4.12).

In typical applications of building acoustics, it is often assumed a random
sound incidence (diffuse field) in the room in which the sound waves strike the
wall surface at all angles of incidence. The average (mean) sound power
transmission coefficient for random incidence of the sound waves is given by the
Paris formula as:

7(p) = (4.14)

/2
7T=2 |t(p)cos@singde 4.15)
0
Substituting Eq. (4.14) into Eq. (4.15) leads, after manipulation, to the following
expression for the mean sound power transmission coefficient in the stiffness-
controlled region, Region I:

T=K>In(i+K;*)=-K’In(z,) (4.16)

The sound reduction index (= transmission loss) for the stiffness-controlled
region is given by the following:

R =10log(1/7) =-20log K —10log{In(1+ (K YY)} (4.17)
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The latter expression may be simplified by knowing that In x = 2.303 log x.

This implies that: R, =10log(1+K;?) =4.343In(1+ K;*) = In(1+ K;*) =0.23R,,
Eq. (4.13a). Consequently, the random-incidence transmission loss for Region I,
is related to the normal incidence case as

R=-20log K, —10logR, +6.4 (4.18)

The quantity K; is expressed by Eq. (4.13b), and R, by Eq. (4.13a).
For a rectangular plate, the stiffness constant, k;, is given by the following
expression:

- 7 ER*(1/a® +1/b*)?
’ 768(1— 4%)
The quantities a and b are the width and height of the panel; 4 is the thickness of
the panel; and E and x are the Young’s modulus and Poisson’s ratio for the panel
material, respectively.

For a circular panel with a diameter D and thickness 4, the specific mechanical
compliance is given by:

4.19)

_ 256ER’
©o3pta-ut)
Note that the specific mechanical compliance or mechanical compliance is the
reciprocal of stiffness.

Some properties of various common materials used in building constructions
are given in Table A (Appendix). Note that the given values are not final and can
vary according to manufacturing method and/or geological conditions. Therefore,
the manufacturer data should always be consulted first.

To study closely the behaviour of plate in the lower stiffness region, Eq. (4.7)
may be rewritten as

(4.20)

Y LR “21)
F  jom+r, +(k,/jo)

At the lower stiffness region (Fig. 4.1), the k/jow term dominates so V/F = jw/k;.
Thus, if a force constant in frequency is applied, then the vibration of the panel
increases at 6 dB/octave. Consequently, the effectiveness of stiffness in the
attenuation of sound transmission or R decreases by 6 dB up to the lowest panel
resonant frequency, fi;, for every doubling of frequency (one octave). Since the
impedance or stiffness is inversely proportional to frequency, the sound reduction
index increases with decreasing frequency, Fig. 4.1. At the first few resonant
frequencies, the magnitude of the sound reduction index is strongly dependent on
the damping at the edges of the panel (boundary losses).
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Resonance region

As the frequency of the incident wave increases, the plate or panel will resonate
mechanically at a series of frequencies, called the resonant or eigen (natural)
frequencies. This is because of the fact that the panel has a finite boundary and
edge fixings. The resonant frequencies consist of a fundamental frequency
(having the greatest effect), and integer multiples of this fundamental called
harmonics (having less and less effect). The resonant frequencies are function of
the plate dimensions, as discussed in Chapter 2. For a rectangular plate, simply
supported, having dimensions a (width) x b (height)x 4 (thickness), the resonant
frequencies are given by Eq. (2.360), Chapter 2, which may be simplified as

fom =0.4534 ¢, h{(n)a)® +(m/b)*) = (2 [4f.){((n]a)* +(m/b)*}  (4.22)

where factors m and n are integers, 1, 2, 3,..., ¢, is the speed of longitudinal
sound waves in the solid panel material, Eq. (2.129) and f. is the critical
frequency, Eq. (2.332). Eq. (4.22) concerns a panel, which is simply supported
but not permanently fixed along its four edges. For a permanent fixation, the
values of the resonant frequencies are approximately twice the values of Eq.
(4.22). For small values of n and m, the resonance frequencies lie fairly long
from each other.

Typically, the lowest resonant frequency (the fundamental frequency) is the
most predominant frequency. This frequency is obtained by setting n = m= 1 in
Eq. (4.22):

fo =@ e, h[43){(fa)® +(1/b)?) (4.23)

The fundamental resonant frequency for a circular plate of diameter D and
thickness 2 with a simple supported edge, the fundamental resonant frequency is
given by (Roark and Young, 1975):

55k
11 7[»\/§D2

Similarly, for a circular plate clamped at the edge, the fundamental resonant
frequency is:

(4.24)

o102
11 ﬂﬁDz

The lowest resonant frequency, fj;, characterizes, approximately, the
transition between Region I and Region II behavior.

(4.25)

Discussion
At the fundamental resonance, fi;, the sound transmission through the plate
is enhanced by the resonant response and the transmission loss, R, drops
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significantly. The damping (natural or added) at plate edges reduces the
resonance amplitude. Increasing the amount of damping applied to the panel will
not alter the frequencies of resonance and coincidence but will act to reduce their
effect. Typically, for most building elements, the fundamental frequency is much
below 100 Hz (e.g., 10-50 Hz) and it is too low to be of practical importance for
typical building acoustics applications, especially, the frequency region: f < f
(lower stiffness region). Therefore, the lower stiffness area mainly is interesting
for studies of infrasound (pertaining to frequencies below the audible range, i.e.,
sub-20 Hz.) and insulation against supersonic booms.

At frequencies, well above that of the lowest resonant frequency, the wall
tends to behave as an assembly of much smaller masses and is then said to be
mass controlled. It is within this range that the mass law directly effectively
applies, and one enters thereby in the Region 11, as discussed below.

4.2.2 Region 11: Mass-controlled region

In the mid frequency range of a plate, higher than the first resonant frequency, fii,
the sound transmission is controlled by the mass inertia of the plate and is
independent of the stiffness of the panel. In this region, part of the acoustic
energy is transmitted through the panel and the remainder is reflected at the panel
surfaces. This physical situation is analysed in Sec. 2.9.8, Chapter 2. Obviously,
the greater the mass of the wall, the greater the sound energy required to set it in
motion.

As derived in Sec. 2.9.8 (Chapter 2), the sound power transmission
coefficient for normal incidence is obtained as

2
i:1+£’y(Msj (4.26)

T PoC

The quantity M, is called the surface mass, or the panel mass per unit surface
area: M, = ph, where the quantity p is the density of the wall or panel, and p, and
¢ are the density and speed of sound in the air around the panel, respectively. The
sound reduction index for normal incidence is related to the sound power
transmission coefficient for normal incidence:

2
R, =10log(l/z,) ﬂOlog{H(’W J ] (4.27)

Po€

In practice, a random field-incidence (diffuse sound field in the source room
assuming waves incident from 0 to 78°) occurs in the room. In this case, it has
been found experimentally that R, in the mass-controlled region, is typically 5 dB
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less than that theoretically calculated at normal incidence, R,, (Beranek, 1971).
Thus, Eq. (4.27) becomes:

2
R=R,-5=10log 1+(7¢M5] -5 (4.28)
PoC

The latter expression is also called field-incidence mass law; see also Sec. 4.9.
In many cases in practice, the second term is Eq. (4.27) is much larger than 1. In
these cases, the reciprocal of the sound power transmission coefficient for normal
incident is proportional to f > and M,*, which means that R increases by 6 dB per
doubling of the surface density, and by 6 dB per octave and 5 dB increase in
frequency; e.g., 20 log (2) = 6 dB/octave. However, a 5 dB/octave and 5 dB per
doubling of mass density is more common in practice. This behaviour is termed
the “mass law” of homogeneous, isotropic materials. The mass law applics
strictly to limp (Jow bending stiffness), non-rigid partitions and is obeyed up until
half the first critical frequency, as discussed below. However, most materials
used in buildings possess some rigidity or stiffness. This means that other factors
must really be considered, and that the mass law should only be taken as an
approximate guide to the amount of attenuation obtainable.

Note that although the field-incidence mass law, Eq. (4.28) is theoretically for
f < f., it yields only accurate results for f < 0.5f. and, therefore, for the region
between 0.5f. and f,, the mass law will not yield the required accuracy and one
may resort in this case to approximate methods (see Sec. 4.3); see also Example
4.4 and Sec. 4.9.

Approximation

Eq. (4.28) may be simplified using an approximate expression that is often used
to determine R in the mass controlled region. For frequencies above about 60 Hz,
the term (zMf /poc), Eq. (4.28), is usually much larger than 1; consequently, Eq.
(4.28) may be approximated by the following expression:

oM
P
At air pressure, 101.3 kPa (14.7 psia) and standard temperature, 22°C (72°F), the
density and sonic velocity of air are: py = 1.196 kg/m’ and ¢ = 344 m/s, so the
characteristic impedance of air, poc = 411.4 Pa.s/m. Inserting this value into Eq.

(4.29), the following expression the sound reduction index in the mass-controlled
region is found:

2
J ~5=20log(M,)+20log(f)—20log(p,c/m)—5  (4.29)

Rzlolog(

R=20log(M,)+20log(f)—47.3 (4.30)
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Here, the specific mass, M, is in kg/m” and the frequency f is in Hz. For normal
ranges of temperature and pressure, the variation in poc would not alter the R
estimate more than + 1dB. This variation is within the range of interlaboratory
variation and may be neglected for all practical purposes. At any rate, Eq. (4.30)
can be used when air temperature varies between 20°C and 30°C.

Practical matters on the mass law

In the absence of test data, standard calculation methods exist, although these
tend to be conservative and not necessary yield exact results. A wall that obeys
the mass law, Eq. (4.28) throughout the frequency range from 125 to 4000 Hz
has a sound transmission class as (Kinsler et al. 2000):

STC =20logM ; +10 (4.31)

The calculation is based on a best-fit relationship between wall weight and STC
based on a wide range of test results.

In brick structures, the density of the bricks and the finish layers has an
essential effect on the airborne sound insulation of the structure. The standard
method (TMS 0302, 2000) outlines procedures for determining STC values of
concrete masonry walls. As with Eq. (4.31), the calculation is based on a best-fit
relationship between wall weight and STC based on a wide range of test results,
as follows:

STC =0.18M , +40 (4.32)

where M, is here in psf (Ib/ft?) units. This equation is applicable to uncoated fine-
or medium- textured concrete masonry. Coarse-textured units, however, may
allow airborne sound to enter the wall, and therefore require a surface treatment
to seal at least one side of the wall. Coatings of acrylic, alkyd latex, or cement-
based paint, or of plaster are specifically called out in TMS 0302 (2000),
although other coatings that effectively seal the surface are also acceptable. Eq.
(4.32) also assumes the following: (1) walls have a thickness of 3 in. (76 mm) or
greater; (2) hollow units are laid with face shell mortar bedding, with mortar
joints the full thickness of the face shell; (3) solid units are fully mortar bedded;
and (4) all holes, cracks, and voids in the masonry that are intended to be filled
with mortar are solidly filled with mortar. If STC tests are performed, the
standard requires the testing to be in accordance with ASTM E 90 (ASTM,
1999), for laboratory testing or ASTM E 413 (ASTM, 1987) for field testing;
refer to Chapter 3.

Eq. (4.31) and Eq. (4.32) indicate that a direct relationship exists between
wall weight and the resulting sound insulation. Heavier concrete masonry walls
have higher STC or R, values. In practice, however, when a structure is very
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heavy, its sound insulation cannot be essentially improved by any small increase
in mass. Thus, the addition of mass will only be economically feasible from the
sound insulation point of view when the structure is originally light. As indicated
earlier that when the surface mass of a structure is doubled, its airborne sound
insulation improves by 5 dB. Structures that insulate sound on the basis of their
mass include concrete and similar massive structures. For example, a properly
designed single-leaf partition still requires a large mass per unit area to obtain a
respectable STC. For example, a 0.15 m (6 in.) thick concrete wall with 13 mm
(0.5 in.) plaster on each side has a mass per unit area of 390 kg/m* (19.8 psf) and
is rated at STC 52. To obtain high acoustic isolation without excessive weight, it
is necessary to employ double-leaf construction, as discussed later on.

Instructively, it is noticed that Eq. (4.31) doesn’t often yield reasonable
results for single-leaf partitions. For instance, for the previous example, Eq.
(4.31) predicts STC = 62, which is 10 point higher than the measured one.
Therefore, Eq. (4.31) should be used as a guideline only. The porosity of the
material and factors related to the stiffness of the panel, are neglected in
developing Eq. (4.31) and Eq. (4.32), although the effect of stiffness is low in the
mass-controlled region.

In general, the mass law is affected by resonance at lower frequencies and
coincidence at higher frequencies. Increasing panel mass also lowers resonant
frequencies and raises the critical frequency.

4.2.3 Coincidence region and the transmission loss

As the frequency of the incident sound wave increases in the mass-controlled
region, the wavelength of bending waves (frequency-dependent) in the material
approaches the wavelength of the sound waves in the air. In this frequency range,
the sound reduction index is adversely affected by the coincidence phenomenon
(equality of the wavelengths), as shown in Fig. 2.45, Chapter 2. The coincidence
first occurs at grazing incidence (an angle of incidence of 90°) when the trace
acoustic wavelength in air matches with the bending wavelength of the plate.
When this condition occurs, the incident sound waves and the bending waves in
the panel strengthen each other and the wall will vibrate with an amplitude,
which approximately corresponds to the particle displacement in the incident
sound wave. Because of this matching, the panel offers very little resistance to
the sound transmission and the wall would, thus, radiate a sound wave into the
receiving room, which has about the same amplitude as that of the incident wave.
Consequently, the resulting panel vibration causes a sharp decrease (dip) in the
panel sound reduction index or transmission loss at this frequency, which is
termed the critical or wave coincidence frequency, f.. Approximately, this point
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corresponds to the transition from Region II behavior to Region III behavior.
Because coincidence can be considered analogous to resonance, the R of the
panel as well as the depth of this coincidence dip in this frequency range depends
mainly on the intrinsic damping of the panel, as shown in Fig. 4.1.

For a homogenous plane plate, the frequency of the first coincidence dip or
critical frequency, f,, is expressed by Eq. (2.332), or Eq. (2.331); E in these
equations is normally the dynamic E, which is approximately equal to the static £
for rigid materials. Note also that Eq. (2.332) concerns the critical frequency for
thin plates. However, when the plate becomes thick, i.e. at high frequencies, the
propagation of bending waves occurs rather slowly. The frequency above which
the plate becomes thick is given in Eq. (4.155) and corrected critical frequency is
given by Eq. (4.156). Further, Table A (Appendix) permits one also to calculate
M. from which the critical frequency (the lowest frequency at which
coincidence can occur) for different materials can be calculated. Alternatively,
Table 2.8 (Chapter 2) offers approximate values of the critical frequency as a
function of thickness for some common building materials. Instructively, the
values of f, of materials can also vary according to manufacturing and geological
conditions, which should explain why the values of f; are not exactly the same for
the same material, and one may resort to Eq. (2.331) for more accurate results,
taking into account that E and p of the material are known.

In case that a structure has several superimposed layers of panels that are not
glued to each other, the coincidence frequencies shall be determined for each
panel layer separately. If, on the other hand, they are glued to each other and
behave as one unit, then it is sufficient to calculate the whole glued panel.

The mathematical expression for the sound reduction index in the coincidence
region is quite complicated and it is rarely used in acoustic projecting.
Alternatively, one may use approximate methods, as reviewed in Sec. 4.3 or the
numerical calculation of the transmission coefficient, as discussed in Sec. 4.9.

Summary of coincidence features

The coincidence effect has the following characteristics (see Fig. 2.45).

1. The condition for coincidence is that Az = A/sin(¢). The lowest coincidence
frequency (sometimes called limiting or critical frequency, f) at which
coincidence can occur is when the angle of incidence of the sound is at 90°
(grazing incidence), which implies that Az = A. When ¢ decreases the coincidence
frequency f, increases according to the following expression:

__Jfe 433
f (@) 2 () (4.33)
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The critical frequency f. can be read from Eq. (2.332) and the coincidence
frequency f.(¢), which is function of ¢ can then be calculated using Eq. (4.33).
Accordingly, the problem is not confined to a single frequency; at each angle of
incidence @ (oblique incidence), there is a coincidence frequency defined by Eq.
(4.33) at which a dip occurs in the transmission loss curve and that the first
frequency at which coincidence occurs is when sin (@) =1; see also Fig. 4.31.

2. In the coincidence phenomenon, the sound waves penetrate the panel, and its
sound insulation mainly depends on the loss (damping) mechanisms of the panel
and the structure.

3. Above the critical frequency, transmission is dominated by coincidence. The
coincidence effect continues at higher frequencies but the loss of insulation is
gradually reduced.

4. When coincidence occurs, it gives rise to a far more efficient transfer of sound
energy from one side of the panel to the other, hence the big coincidence-dip at
the critical frequency. In many thin materials (such as glass and sheet-metal), the
coincidence frequency begins somewhere between 1000 and 4000 Hz, which
includes important speech frequencies.

5. Above the critical frequency, stiffness begins to play an important role again.
6. Coincidence frequencies for different materials occur in different parts of the
acoustical spectrum, sometimes outside the normal range used in building
acoustics. For best design practices, f. should not fall in the middle of building
acoustic frequency region, i.e. the unfavourable frequency region, approximately:
160 Hz-2000 Hz.

Design of partition with respect to ..

Every simple panel or plate structure has a coincidence frequency, f.; the
coincidence phenomenon occurs at frequencies higher than this, and the sound
insulation of the structure decreases. Therefore, in order to obtain high sound
insulation close to that predicted by the mass law one should try either to make f.
as low as possible, below 100-125 Hz or very high, above 3150-4000 Hz; the
frequency range 100 Hz-4000 Hz is important for human hearing. In the former
case, it is implied that the wall becomes thick with low density and high Young’s
modulus, e.g. 15 cm (5.9 in) concrete. In the latter case, it is required that the
wall instead become thin and has high-density with low Young’s modulus, e.g.
13 mm (1/2 in) plasterboard wall, according to Eq. (2.332). Walls of medium
thickness that lie in between roughly 1 ¢cm (0.4 in) and 8 cm (3.2 in) are therefore
often less favourable, from the acoustical viewpoint. In this context, the
coincidence phenomenon is generally not a problem with thick and heavy
(massive structures). On the other hand, its effect on the sound insulation of thin,
simple concrete and brick structures must be considered in design. The
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coincidence frequency of thin building panels is usually in the range of 2,000 Hz
to 3,000 Hz. The higher the coincidence frequency of a building board, the
smaller the effect of the coincidence phenomenon on the sound insulation of a
structure.

To demonstrate how the coincidence effects the sound insulation
experimentally, Fig. 4.3 shows idealized transmission loss curves, including
coincidence dips, for some common materials. Materials 1, 2, and 3 all have the
same mass per unit area, but quite different STC ratings (= R,) because of
differing coincidence effects. In the thicknesses commonly used in practice, the
critical frequencies of concrete and plywood lie within the frequency range that is
important in building acoustics (100 to 4000 Hz), and therefore they are more
susceptible to STC reductions due to the effects of coincidence. For gypsum
wallboard, the coincidence frequency is quite high and the effect on the STC is
usually less; wallboard is also commonly known as drywall as gypsum board,
and plasterboard.

70
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Fig. 4.3 Measured sound reduction index of typical single-leaf walls. 16 mm plywood,
10 kg/m?, STC = 21; == == == [3 mm wallboard, 10 kg/m2, STC = 28; eseee 1.3 mm steel, 10
kg/m?, STC = 30; = o == ¢ 100 mm concrete, 235 kg/m?, STC = 52 (after Quirt, 1985; Warnock,
1985).

The depth of the coincidence dip is determined by the damping (energy
losses) in the material and at its edges where it is in contact with other materials
in the supporting structure. The greater the damping, the shallower the
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coincidence dip and the less the effect on the sound insulation. Coincidence dips
are a problem for materials with low internal damping and high bending stiffness
(such as metals or glass). In old building practice, lead sheet or leaded vinyl were
broadly used. In the modern practices, loaded vinyl (impregnated with non-lead
metal) is a superior option.

4.2.4 Region I11: Damping-controlled region

For frequencies well above the critical frequency, the sound reduction index is
strongly dependent on the frequency of the incident sound waves, surface density
and stiffness of plate, and the damping of the plate material. Therefore, this
region is also called the upper stiffness region.

For sound waves striking the plate at all angles (random incidence) at
frequencies greater than the critical frequency, the following empirical field-
incidence expression applies for the sound reduction index in the damping-
controlled region ( > f.) (Beranek, 1971):

R=R,(f,)+10log(n)+ 33.22log(f/f.)—=57 (4.34)
The quantity R,(f.) is the sound reduction index for normal incidence at the
critical frequency:
2
M
R (f.)=10log 1+(”—fiJ (4.35)
Pot

The quantity # is the total loss factor or damping coefficient for the panel. Eq.
(4.34) is also called the modified mass law, and can be simplified in one
expression, after inserting the necessary constant values, as

R=20logM, —13log f, +33log f +10logn —48 (4.36)

The latter expression can be used when air temperature varies between 10°C and
30°C. Note that an equivalent form to Eq. (4.36), which can be seen in some
literature  is: R =~ 20logM , —10log f, +30log f +10logn—44.5,  where the
constant 44.5 is sometimes approximated to 45.

Surface factor

When the panel is a part of a construction and the excited part of the plate, S, is
less than the area of the whole plate S, (Sw =5), then the surface factor,
{—10log(S/S,,) } should be added to the right-hand side of Eq. (4.36) or Eq.
(4.34). This case is emphasized in a typical dwelling in which the walls that
separate the two apartments are load-bearing (e.g., concrete) while the internal
walls in the apartments are made of lightweight materials (plasterboard walls)
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that are not load-bearing. This implies that at vertical measurement, § is the
excited area of the plate in the source room and §,, is plate’s total area from
fagade to facade and from load-bearing wall to a load-bearing wall. This addition
in terms of surface factor is to compensate for the loss of vibration energy in the
plate S, due to the intersection of lightweight partition and heavyweight partition
in which the lightweight partition contributes in this case inconsiderable energy
loss. If, on the other hand, S,, =S as in the case of intersected heavyweight
partitions of same properties, the surface factor turn to zero. It is assumed here
that the vibration level (energy density for bending waves) is approximately the
same over the whole surface, S,,, (Kihlman, 1982).

Plate size

For most thin homogeneous materials commonly used in building construction,
the mass law, Eq. (4.28) and the modified mass law, Eq. (4.34) provides a good
prediction of the transmission loss over most of the frequency range. However,
an additional effect may be taken into account to obtain good accuracy at low
frequencies; this is radiation efficiency of forced waves due to the influence of
plate size. Subsequently, to improve the accuracy at low frequencies, a correction
factor, which takes into account the influence of plate size (finiteness) is
suggested (Sewell, 1970) as

AR = —10log{In(kS"*)} +20log{1 - (f/£.)*} (4.37)

where S is the plate area and k is the wave number of air. Using experimental
testing, it was noticed that this correction is to be used for f < 200 Hz for a
normal test constructions of area: 10-12 m’ (Ballagh, 2004).

Discussion

o The loss factor, #, in any expression of R is the total loss factor, which depends
not only on the wall’s internal (material) losses or damping but also on the
energy loss along the wall’s edges (boundary or edge damping) or so called
coupling loss factor; see Sec. 4.10. The internal losses are, for typical building
materials, very small, usually in the interval (0.3%-1%). The energy losses across
edges (coupling loss factor) yield often greater contribution to the loss factor than
the internal losses. However, it is dependent on the how the wall’s boundary
conditions are made. For example, a simply supported wall at edges has losses
essentially lower than if the wall is fixed at edges, which results in a lower R in
the former case. A difference amounted to above 5 dB can most likely occur
between extreme cases. If, on the other hand, the panel is not attached to
adjoining structure, then the total loss factor is approximately due to the material
losses only, assuming typical building materials.
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¢ For 'the ‘dampi.ng—contmned region and assuming that 7 is cons‘fant, the sound - 323 B (343.2)2(3"?)

reduction 1nd.ex 1§ prop.ort‘lonal to 33.22log ( f). If the frequency is doubled, ‘the fe= 7, h = 7(4628)(0.040) =

sound reduction index is increased by 33.22log (2) = 10 dB/octave. In practice,

however, the loss factor drops with increasing frequency. Thus, the slop in region

T (also called upper stiffness region) should conservatively be considered as M,=ph = 640(0.04) = 25.6 kg/m’

7-5‘}91’ dB/ oc(;ave. : - (15.9 dB/ ) i ' The first resonant frequency is found from Eq. (4.23):

e The sound insulation of thin plate increase (7.5- octave) in region III _ 2 2 2

(above £,) is valid as long as the wall vibrations are considered a 2-dimensional. fir= GA3.2AESH [AAHHAALTYI] =113 He

At higher frequencies, the oscillations become 3-dimensional in which special

effects of thick plate appear and Eq. (4.36) or Eq. (4.34) will not be valid in this (a) For f= 63 Hz.

case. Consequently, the above simple expressions are not adequate fo describe The frequency, f= 63 Hz < 114.3 Hz = f,,.

very thick and heavy panels such as concrete or brick. For these types of panels, Thus, this case lies in Region I, the stiffness-controlled region. The spring

shear waves become the dominant flexural waves at high frequencies. This constant may be evaluated from Eq. (4.19)

affects the transmission loss at high frequencies reduces the frequency - 78(13.4)(10)° (0.047){(1/1*) + (1/1.7%)} ; \

dependence to 6 dB/octave at high frequencies instead of the 7.5-9 dB/octave s = 768(1-0.15%) =1.459x10" N/ m

behaviour of thin panels above the critical frequency. Instructively, at high

frequencies, one may resort to direct numerical methods suitable for thick plates, . The value of the parameter defined by Eq. (4.13b) is as follows:

as discussed in Sec. 4.9. K = 471z, _ 47(63)(413.2)
Tk, 1.459(107)

The surface density is:

0.022

Example 4.1: A door made of pine wood has dimensions of 1 m (39.4 in) wide The mean sound power fransmissi -
by 1.7 m (67 in) high by 40 mm (1.6 in) thick. The air on both sides of the door 4.16) p ansmission coefficient may be calculated from Egq.
has a temperature of 20°C (68°F). Determine the sound reduction index for the 5 N 5 )
following frequencies: (a) 63Hz, (b) 250 Hz, and (c) 1000 Hz. Assume only T=K; In(l+K)=(0.022)" In(l+(0.022) ?)=0.0037
material losses occur, and the pine door has high stiffness. The sound reduction index for a frequency of 63 Hz, thus, becomes:

R =101og(1/0.0037) =24.3 dB

Solution

The following properties of the pine door are obtained from Table A (Appendix): (b) For f=250 Hz.
Density p= 640 kg/m3 (40 lbm/fta) For this case, fi;= 113 Hz <250 Hz < 351 Hz = ..

Damping factor 7 = 0.02 Accordingly, the operating region is Region 1I, the mass-controlled region. The
Young modulus E= 13.4 GPa (=1.88x10° psi) sound power transmission coefficient for normal incidence is found from Eq.
Poisson’s ratio p= 0.15 220

From Table 2.4 ¢ = 343.2 m/s (1126 ft/sec), po = 1.204 kg/m® (0.0752 1b,/ft)), so 1 (M, g . ( m(250)(25.6)
the characteristic impedance reads, zo= poc = 413.3 rayls. ' T, "l - +( 413.3

The propagation velocity of the quasi-longitudinal is obtained from Eq. ! o
(2.129): The sound reduction index for normal incidence is found from Eq. (4.28):
" R, =10log(1/7,) =1010og(2368) =33.7 dB
0 :( 13.4(10%) j LTS - The sound reduction index associated with random incidence is found from Eq.

640(1-0.15%) o
R=R-5=337-5=28.7dB

2
) =2368

2

The critical or wave coincidence frequency is found from Eq. (2.332):
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(Note that this result is very approximate since the validity of field-incidence
mass law is up to /< 0.5f,)

(c) For f= 1000 Hz.

The frequency, f= 1000 Hz > 351 Hz = ..

Accordingly, this case lies in Region III, the damping-controlled region. The
sound reduction index for normal incidence at the critical frequency is found
from Eq. (4.35):

7(25.6)351)
R (£)=10log| 1+| 22228220 1 | _367 4B
»(Je) Og[ +[ 413.3 } } 367

The transmission loss for a frequency of 1000 Hz is found from Eq. (4.34):
R =36.7+1010g(0.02) +33.2210g(1000/351)- 5.7 =29.1 dB

Alternatively, using Eq. (4.36):
R =2010g(25.6) —131og(351) + 3310g(1000) + 1010g(0.02) —48 =29.1 dB

Example 4.2: A steel plate (density 7700 kg/m3) has dimensions of 1 m (39.4 in)
wide by 1.7 m (67 in) high. The air on both sides of the plate has a temperature
20°C. After checking the sound insulation requirements, it is found that if the
transmission loss (or sound reduction index) of the plate becomes 33 dB at a
frequency of 500 Hz, then the sound insulation will fulfill the requirements.
What is the required thickness of the plate?

Solution

From Example 4.1: ¢ = 343.2 m/s (1126 ft/sec), po = 1.204 kg/m’ (0.0752 Ib,/ft),
2= poc = 413.3 rayls. From Table A (Appendix), the properties of steel are
selected as: p = 7700 kg/m’, E = 200 GPa, and u = 0.3.

The problem under concern doesn’t clarify in which region the required the
sound reduction index is located in, so this problem involves iteration. However,
it is clear that at 500 Hz, the transmission loss can either be in Region II or
Region III since fi;, the limit of Region I, cannot be higher than 500 Hz, for
typical applications.

Let us first consider Region II, the mass-controlled region.

The required sound reduction index for normal incidence is given by Eq. (4.28):

R,=R+5=33+5=38dB
Thus,
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R, =10log{l+ (M  f/z)’}=38dB= (M f/z,)* =10 1= 6309
The surface mass is:
_ (6309)'7(413.2)
ST m(500)
Thus, the required thickness (if the R region is Region II) is as follows:

h =M=O.00271 =2.71mm (0.11 in)
7700

=20.90 kg/m* = ph

Now, let us check the assumption of Region II behavior.
The propagation velocity of the quasi-longitudinal is obtained from Eq. (2.129):

[ 200(10%)
CL =

\V

oo =5343 m/s
7700(1-0.37)

The critical frequency is found from Eq. (2.332):

V3 (343237
T omc,h m(5343)(0.00271)

f. =4485Hz >500Hz =f

Let’s check also the first resonant frequency:
fii= (343.2)%/4(4485) [(1/(1)H+((1/(1.7))] = 8.8 Hz

Subsequently, the frequency f = 500Hz lies in Region II, because fi < f < f;, and
the required panel thickness is:
h=271mm=0.11 in.

4.2.5 Practical design guideless for a single wall

Resonance and coincidence effects cannot be eliminated. As indicated before, if
the designer aims to create the maximum transmission loss, an attempt should be
made to get resonant frequencies as low as possible (preferably well below the
audible range) and the critical frequency as high as possible (preferably well
above the audible range). In a broader sense, the ideal barrier material should
have a high density and low bending stiffness (i.e. very limp). Dense, limp
materials have the tendency to push the coincidence frequency upward and out of
the range of interest. As it is not possible to apply a generic solution to all single
panels, the following guidelines are applied:

* Reducing the stiffness of a panel lowers its resonant frequency and raises its
critical frequency, basically increasing the region for which the mass law applies.
One desires resonant frequencies be below range of human hearing.

¢ Increasing panel mass also lowers resonant frequencies and raises the critical
frequency.
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o Decreasing panel thickness raises the critical frequency but generally reduces
panel mass. One also should consider that high density gives high R in mass-
controlled region.

e Increasing the amount of damping applied to the panel will not alter the
frequencies of resonance and coincidence but will act to reduce their effect. High
internal damping can prevent resonant modes from “ringing”.

o Materials with very low stiffness such as sheet lead effectively do not show
coincidence dips.

Good insulation is therefore a combination of low stiffness, high mass and
high damping, taking into consideration the cost constraints. Consequently, the
ideal material for high R is sheet lead, which has both high density and low
stiffness. Unfortunately, due to health concerns as well as pollution to
environment, lead can no longer be used. For the same reasons, gypsum board is
a good barrier material and is more effective than plywood (which is stiffer and
not as dense as gypsum board); see e.g., Fig. 4.3. Loaded vinyl, or vinyl
impregnated with metal filings, is a common material for high R.

The most common method of adding damping is to apply a thick layer of
mastic-like material to one side of the panel. This type of treatment is only
effective on materials that have low mass and an inherent lack of damping. It
would be useless on thick concrete walls, for example, but very effective on
metal automobile panels.

The insulation of a single-leaf panel can be improved in a number of ways,
but this process can only continue up to a certain point given the exponential
increase in mass required. Consider the example of a single brick wall with an R=
of 22 dB. To increase this to an overall 40 dB in all regions, the mass must be
increased to 8 times the original (2°). This is clearly impractical from a building
perspective. Consider, on the other hand, the fact that the wall already has an R=
22 dB. If one were to build another brick wall right next to it, in theory one could
achieve a further drop of 22 dB. A situation approaching this is possible if the
two walls are completely separated from each other with no common links,
footings or edge supports, and an air gap greater than 1 m between them.
However, this is often just as impractical as it is vastly increasing the mass of the
wall and/or disagreeing with the architectural design. In practice, walls do have
common supports at the edges. It is also rare to find a cavity wall with more than
few centimetres of air gap. In this context, the following practical guidelines may
be considered for better sound insulation for a wall with a cavity and/or attached
layers; see also Sec. 4.4.

o Well sealed cavities can result in an increase in sound insulation well above
mass law, assuming the cavity depth is not small, e.g., at least 100 mm deep.
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e Use of layers of different thickness can greatly assist in mismatching resonant
and critical frequencies across the panel.

o The use of absorbent materials within the cavities can help to further reduce
sound transmission.

e Only resilient elastic materials should be used as wall ties and suspension
members such as elastic elements to reduce any direct connection between
layers.

e If required, only widely spaced and staggered studs should be used within
partitions.

e Caulking (i.e., the process of sealing a gap between two surfaces for the
purpose of making it air or watertight using e.g., acrylic latex caulk) and sealants
should be used to eliminate perimeter sound leaks. This point is rather important
in pratice as it alludes to flanking. One of the highest achievable R value for a
partition is about 55-60 dB. Above 45-50 dB, flanking paths become more and
more important. This explains why multiple-layer (three or more) partitions do
not offer any significant improvement over double-leaf construction, as discussed
later on.

At grazing incidence where the wavelength of the sound in air is the same as
the bending wavelength of the partition, the transmission of the sound is high
with consequent loss of insulation due to coincidence effect, as discussed earlier.
Typical plasterboard has a superficial mass of about 18 kg/m® and a critical
frequency of 2000 Hz. Stiff materials show a reduced coincidence effect and
improved insulation at the resonances if external damping is provided by the
fixings. Lead clearly has many disadvantages, it can flow under its own weight,
but it can be incorporated within the sheet material. Note, however, that the
environmental impact of lead should be investigated carefully before any
application is decided.

4.2.6 Examples of sound insulation of single-leaf walls

In order that a single wall should have a good sound insulation, which is
interesting in relation to the dwelling houses, offices, etc it is preferred that it is
made relatively thick and stiff. Ordinary materials are, therefore, concrete, brick
and the like. In Table 4.1, it is presented examples of measured insulation index
for some typical constructions. The measurements have taken place under
laboratory conditions, i.e., with relatively small areas (in general 10 m’) and
fixed edges, i.e. high energy loss at edges. In the field, there are usually other
conditions, which seem to decrease the insulation such as flanking. Typically, a




372 Building Acoustics and Vibration: Theory and Practice

difference between the two cases can amount to 5 dB. Other examples of single
partition with ratings in R,, and STC are presented in Appendix 2 of the book.

4.3 Approximate Methods for Estimating the Sound Reduction Index for
Single Leaf Partitions

In preliminary design, it is often required to estimate the sound reduction index
spectrum for a panel. However, since the prediction of sound transmission loss
over the whole frequency range is complicated, especially at the coincidence
region, it is suggested a number of simplified schemes to calculate the sound
reduction index R (= transmission loss TL) for sing-leaf partitions. Two of these
methods are, herein, presented.

Table 4.1 Examples of insulation index for single-leaf walls measured in the laboratory.

Construction type Features

15 cm Concrete: R,,~ 58 dB
150 mm 18 ¢m Concrete: R,,~ 60 dB
180 mm

20 cm massive concrete block with
plaster layer (15 mm on both sides):
R,~58 dB

25 cm hollow concrete block with
plaster layer (15 mm on both sides):
R,~58 dB

l4-stone brick wall with plaster layer
(10 mm) on both sides: R,,~ 53 dB

?{: %%/W /{%%& The same but with plaster layer on

one side only: R,~50dB

30 cm lightweight concrete block
with plaster layer (15 mm on both sides):
R,~50dB

330 mm
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4.3.1 First approximate method

This method is advanced to estimate the sound reduction index or transmission
loss curve for Regions II and III (Watters, 1959). If the plate has dimensions a
and b that are at least 20 times the panel thickness A, the first resonant frequency
for the panel is usually less than 125 Hz, so the major portion of the sound
reduction index curve will involve Regions II and III. This case is typical for
evaluating the transmission loss in building acoustics applications. However,
when using this approximate method, one should also check the importance of
the Region I behavior. For frequencies below the plateau (Region II), Fig. 4.4,
the sound reduction index is approximated by Eq. (4.30). As inspected from Eq.
(4.30), when the frequency (a frequency change of one octave) is doubled, the
change of the sound reduction index becomes: AR =20log(2)=6.02 =6
dB/octave. At the coincidence region, a horizontal line or plateau is reached and
the average transmission loss is practically constant. The frequency extent of this
plateau depends on the damping, or the panel material. Consequently, the
approximate method replaces the coincidence region (Fig. 4.1) between Region IT
and Region III by a plateau, as shown in.Fig. 4.4. The height of the plateau (Rp)
and the width of the plateau, Afp, depend on the panel material. Table 4.2 shows
the plateau average height for some common single panel partition wall
materials. Above the plateau (i.e., the damping-controlled region), the
transmission loss increases again as 10 dB/octave, according to Eq. (4.34).

Plateau breadth, Af,, |
b "

10 dB/octave

6 dB/octave
/ Plateau height,

R, (dB)

Transmission loss (dB)

Octave band centre frequency (Hz)

Fig. 4.4 Schematic of the approximate curve for the sound reduction index of a panel. The chart
assumes a reverberant sound field on the source side and approximates the behaviour around
critical frequency with a horizontal line or plateau. The plateau width is Afp =f,—f; , where f) is the
frequency at which the plateau begins and f, the frequency at the end of the plateau. The plateau
width indicates region II, mass-controlled region. The slope 10 dB/octave depends on size of panel,

edge damping and internal damping (total loss factor). The slope 6 dB/octave is field-incidence
transmission loss.




374 Building Acoustics and Vibration: Theory and Practice

In Region III, the slope of sound reduction curve is 10 dB/octave.

For a conservative estimate of the sound reduction index, it is recommended
that the R curve in Region III be drawn with a slope of the 10 dB/octave for the
first 2 octaves above the plateau. The remainder of the curve should be drawn
with a slope of 6 dB/octave (Beranek, 1960). Note, however, as discussed earlier,
that the practical reduction in sound transmission loss is not actually 10
dB/octave in Region III, but varies between 7.5-9.0 dB/octave.

Table 4.2 Values of the plateau height (Rp) and plateau width (Afp) for the approximate method of
calculation of the transmission loss for panels (partially after Watters, 1959).

Specific surface  [Plateau height, | Afp=f,—f | Plateau breadth,
Material density Rp(dB) (octave) |frequency ratio,
(kg/m” per cm) hilfi
Aluminum 26.6 29 3.5 11*
Brick 21 37 2.2 4.5
Concrete, dense  |22.8 38 2.2 4.5
Glass 24.7 27 33 10
Lead 112 56 2.0 4
Masonry block
Cinder** 114 30 2.7 6.5
Dense 32 3.0 8
Plywood, fir 5.7 19 2.7 6.5
Plaster, sand 171 30 3.0 8
Steel 76 40 35 11#
* These materials have, in general, very low damping. The numbers are for a typical panel
in place
** Hollow block. The values are determined for 6-in (150 mm) plastered block.

4.3.2 Second approximate method

This method, called also a template method resembles somewhat the first
method, treated above. In this method, a consideration is given to the influence of
critical frequency on the sound insulation of a structure, and the slope of Region
I is set to 7.5 dB/octave. Since it is common that Region I is rarely encountered
in building acoustics practices, Region I will not be considered. This method is
outlined in the following steps; see Fig. 4.5.

I. The critical frequency for typical building constructions is calculate as

£, ~1.83x10* /M /VB (4.384)
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For the special case of homogenous, plane-parallel wall, Eq. (4.38a) becomes:
f. =6x10*p [mE (4.38b)

where p and E are the density and Young’s modulus of the plate, respectively.
II. Calculate the plateau height, R, (dB) for the panel. In general, for single wall,
this is expressed as

R, =20log(M ) +20log(f,)—58.5 (4.39a)

For the special case of homogenous, plane-parallel wall, Eq. (4.39a) becomes:
R, =30log(p)—10log(E) +37.5 (4.39b)

L 4

f/f,

Fig. 4.5 Schematic for calculation of sound reduction index for a single-leaf wall according to the
second approximation method. The frequency scale is logarithmic and the reduction scale linear. R,
is the plateau height, f. is the critical frequency, and points a, b, ¢, d are used to draw the
transmission loss curve.

III. Construct the low-frequency asymptote. At f/ f, = 0.3, draw a vertical line,
which intersect with the value of R, (calculated from Eq. (4.39)) in point a and
draw from there, towards lower frequencies, a straight line with the slope 6
dB/octave, as illustrated in Fig. 4.5. The frequency scale must be logarithmic and
the reduction scale linear;

IV. At f/f. = 0.6, the point b must be 3 dB above R,.

V. The point d. Put in the point d on {25+10 log ()} dB above R, at f/f. = 2.

VI. Construct the high-frequency asymptote. Draw from d a straight line, towards
high frequencies, with the slope 7.5 dB/octave.

VIL The approximation for the coincidence region. Join the points, a-d so that a
dip is formed at a point c at f..

The value of point ¢ (coincidence dip) is as follows: 5 dB under R, if f. > 200
Hz; 4 dB, if 200 Hz > f,>160 Hz; 3 dB, if 160 Hz > f.>125 Hz; and 2 dB, if 125




376 Building Acoustics and Vibration: Theory and Practice

Hz > f. >100 Hz. Note, however, that a real dip in the sound reduction index’s
curve will not occur if £, is below 200 Hz. In this case, the points, b and ¢ are put
directly on the plateau R,. The application of this approximate method for
estimating the sound reduction curve is illustrated in Example 4.3.

Discussion

This method is based on empirical values to estimate the sound reduction index
for typical building constructions. It is widely used in Sweden and was developed
by Stig Ingemansson (see e.g., Ingemansson and Elvhammar, 1977). Note that
this method doesn’t consider the case when the sound reduction index curve will
drop, approximately, at 6 dB/octave at high frequencies, f'>> f..

Example 4.3: Calculate the sound reduction index in the frequency range 100-
3150 Hz for a massive concrete wall, thickness 90 mm, p = 2400 kg/m3; n=2%.
and E of the wall is 26 x10° MPa. Use the approximate method.

Solution

Critical frequency may approximately be calculated using Eq. (4.39b):
£ = 6x10* () "*1h(E)'"™ = 6x10* (2400)'/0.09(26x10%)'** = 203 Hz.
The plateau height is obtained from Eq. (4.39a):

R, =2010g(2400(0.09)) + 2010g(203) -58.5=35dB.

Point a on R, =35 dB and at f/ f.= 0.3, it follows that f=203 x 0.3 = 61 Hz.
Thus, is plotted a line, towards lower frequencies, with the slope 6 dB/octave
(see Fig. 4.5).

Point b on R, +3 dB =38 dB and at f/ f.= 0.6, it follows that:

f =203 x0.6=122 Hz.

Point ¢ is 5 dB below R, (because f,. > 200 Hz) and at f...

Point d on R,+25+10logy =35+25+10log (0.02) = 43 dB and at f/ f. = 2, it
follows that f'= 203 x 2 = 406 Hz.

Thus, towards higher frequencies it is plotted a line with the slope 7.5 dB/octave.
These steps are illustrated in the Fig. 4.6.

4.4 Sound Reduction Index (Transmission Loss) for Composite Walls

The material presented in the previous sections applies for transmission of sound
through homogeneous, single-component (leaf) panels, such as a plate of glass.
In this section, more complex constructions that can be analyzed analytically will
be considered.
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Fig. 46 An example application to calculate the sound reduction index for a massive concrete wall,
Example 4.3.

4.4.1 Background

If one only increases the thickness of a single-leaf partition to improve the sound
insulation in the mass law region, this can lead to worse performance because the
coincidence frequency will reduce (Eq. (2.332)), and can fall into a more
important region. Moreover, the panel becomes heavier and lightweight
construction is to be preferred, not to mention the incurred costs for such designs.
For such situations, an increase in sound insulation can be obtained by using
double-wall construction. That is, a pair of double walls separated by an air space
is very much more effective than an equivalent weight single wall. As discussed
in Chapter 3, the sound insulation for a partition of double-leaf construction is
considerably higher than that for a single-leaf partition of the same mass density.
For instance, if one compares the transmission loss curve for two sheets of 13
mm (Y2 in.) gypsum board bonded together as a single leaf with that obtained for
the same sheets used in a double-leaf construction, one would notice that an
improvement is achieved, and when absorbing material is placed in the cavity
between the boards, higher performance is obtained. A double wall construction
with an air gap between (or even triple construction) would, certainly, perform
better than a single one. Consequently, a method to obtain higher sound
reduction index or transmission loss than what is available with normal single-
leaf constructions is tg use a double-leaf wall. By definition, double wall is wall
that is composed of two surface layers separated by a cavity of a gap. The two
surface layers (leaves or panels) can either be separated or be connected with
€.g., joists or beams. The cavity can either be empty or filled with mineral wool.
In practice, if the space between the walls is 30 cm or more, the overall
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transmission loss is approximately the sum of the transmission loss for each wall.
In certain situations where a large transmission loss is required, the materials can
be installed in several layers, rather than one thick one. The requirement is that
there should be minimum mechanical connection between layers, other than the
air space.

In general, the sound propagation though a double wall with connections can
occur on three different ways, as depicted in Fig. 4.7:
A. Totally separate wall leaves: the sound passes through air cavity.
B. The wall leaves have mechanical connections with each other and the sound
passes via these connections, called structure-borne sound.
C. The wall leaves are fixed on edges and so the sound passes via fixed edges.
This also called structure-borne or flanking sound.

\J
>

|
@)

Fig. 4.7 Sound propagation through a composite wall occurs via three paths. For the path B, the
fixation or connecting beam can give rise to a sound source. The structural forces excites, in turn,
the plate at the fixation area at which free bending waves will spread out in the receiving leaf.

In general, the sound reduction index for a double wall can be written as
R=R +R, +K (f>fo) (4.40)

where R, and R, are sound reduction indices for respective wall’s two leaves
(dB), K is the coupling factor-usually negative (dB) and f; is the combined
system eigen (resonant) frequency (Hz). The coupling factor K depends mainly
on the properties of the air cavity: width, absorption, and mechanical
connections. In the case that connections are slightly important, K only weakly
depends on the leaves sound reduction index. A modification on the isolation of
either leaf yields therefore a corresponding change in the double wall.

In comparison with the theories related for single walls, the mathematical
derivation of the sound reduction index of double walls is substantially
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complicated. Additionally, it is difficult to give the resulted expressions a form
that permits some direct conclusions concerning the influence of different
parameters. Note that, at present, there no comprehensive theory, which describes
the sound reduction index of double walls in the whole frequency region of

mterest. N

4.4.2 Composite wall without mechanical connections

There is two main routes for the energy flow through a double wall; radiation
from the first face to the air cavity at which the second face moves and radiate
sound in the receiving room, in addition to the structure-borne transmission
between the leaves via mechanical connections. In this section, it is studied only
the first form of transmission; i.e., path A, Fig. 4.7.

In order to fulfill the sound insulation requirement for a wall between
apartments using a double-framed wall, it is not preferred to have mechanical
coupling between the separate frames. Thus, there has to be an air gap between
the frame halves and in addition to this, it is recommended that the studs be
installed at different locations in the frame halves. Fig. 4.8 shows a double wall
without mechanical connection. The impinging sound waves from a sound source
make one half of the wall vibrate. The air space between the boards serves as a
“spring”, transmitting the oscillating motion to the other half of the wall. For this
construction, the overall transmission loss is influenced by the air mass in the
space, whether it is empty or filled by an absorbent, in addition to the effect of
the transmission loss of each separate panel. In general, the following frequencies
are important to the transmission problem:

e the coincidence frequencies of the two leaves, f.; and f.;
e the lowest order resonance across the air cavity, f,;

o the lowest order structural resonance, fy; and

o the lowest order resonance of the ajr cavity, fj.

The characteristic or structural resonant frequency, fo, defines the frequency at
which the air within the cavity of a double wall acts like a spring, coupling the
(limp) masses of the panels to form a resonant mechanical vibration response of
the system. At f,, the two panels move in opposite phase, bouncing on the
““spring’”> of the air in the gap. This frequency may be derived as follows.
Consider the representation of the double wall (Fig. 4.8) as a simple mass-spring-
mass system, as shown in Fig. 4.9. Further, that the sound wave is assumed to
excite the partition at normal incidence.

The equilibrium of the forces (N per unit area of panels) for this system
results into two simultaneous equations as follows:




380 Building Acoustics and Vibration: Theory and Practice

M.,

Fig. 4.8 Double partition without mechanical connection. My, and M, are the surface densities for
panels 1 and 2, respectively.

d
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Vi vy
Fig. 4.9 Representation of the double wall as a mass-spring system under low frequencies. k, is the
spring stiffness, v is the horizontal velocity of respective panel, F is the applied force, and d is the
spacing between the panels.

k
F—vjoM = -v,)— (4.41a)
jo
: k,
Vo J@M 5 = = vy) > (4.41b)
jo
These two equations may be solved and the following equation is obtained:
F 1
Lok, - oM )k, - M )~ k2] (4.42)
VZ Jaka
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The term jwM, is the impedance of the panel (Ns/m per unit area), k, is the
dynamic air stiffness constant, M, and My, are the surface densities (=ph, where
pis volume density) of panel 1 and 2, respectively, and v is here the panel
velocity. Now, setting the impedance of panel 2: F/v,= 0, and solving Eq. (4.42),
the following equation is obtained:

0)2 = ka (Ms2 + Msl )i \[k(% (sz + Msl )2 (443)
2Ms2Msl

The (-) term with square root has no physical meaning since in this case (@= 0)
and so Eq. (4.43) becomes:

wz — ka(Ms2+Msl) (444)
M.~2Ms1

Accordingly, the mass-spring-mass resonant frequency becomes:

L\/kn(MsZ—i_Mxl)

= (4.45)
2r MS2MSI

Jo
The air stiffness constant (or dynamic stiffness of the gap), k, (N/m per unit
area), is expressed at low frequencies as:

k, = yPyld = ¢*py/d (4.46)
where y is the ratio of the specific heat at constant pressure and constant volume
(= 1.4), P, is the static sound pressure (typical sea level atmospheric pressure
101 325 Pa ~ 10° Pa) and p, the air souné density, and c is the sound speed in air
(Table 2.8). Substituting Eq. (4.46) into Eq. (4.45) yields f; (the resonant
frequency of the two panels coupled by the air space):

/2
cipof 1 1

— - |Fof - 4 4.47a

Jo 27:{ d [Msl M.YZH (“4472)

It is important to note that f;, expressed in the latter expression agrees with the
physical characteristics of two panels separated by an empty airspace such as
double glass panels, as derived above. However, in practice, there was found an
empirical fix that must multiplied with the right-hand side of Eq. (4.47a) to adjust
with measurements. This is, particularly, for the case of a typical double wall in
which the air cavity is filled with a porous sound-absorbing material (mineral
wool). This factor is set to V1.8. Subsequently, f; in this case is expressed as

/2
Jo = l1gfe L+ ! (4.47b)
2 d\M, M,
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The sound insulation curve for a double partition consisting of two thin
homogeneous panels, without mechanical connections between the two leaves
and without/or with an absorbent in the cavity can be predicted according to the
three regions or regimes, according to the frequency.

Regime A (or Region 1), the low-frequency regime, occurs for closely spaced
panels. The walls act in this case as limp masses and air-gap acts as a spring.
When the two panels are placed very near to each together, the panels act as one
unit with respect to the sound transmission and so the air space between the
panels has a negligible effect. In general, this behavior occurs for the frequency
range:

Po€

—C 4.4
”(Ms1+M.c2)<f<fo (4.438)

where p, and c are the density of and sound speed in the air around the panel. It
is also possible reduce the frequency limit, Eq. (4.48), to only f < f, as the left
term of Eq. (4.48) is very low, less than 10 Hz in most typical construction
considered in building acoustics. The sound reduction index for Regime A
follows mass law, with the combined mass of both partitions and is given by the
following:

R=20log(M , + M ,)+20log(f)—47.3 (4.49)

At fo, there is an effective coupling between partitions across air gap, which leads
to poor transmission loss, R. Therefore, one should try to use a double structure
that has low resonant frequency, f; (below 100 Hz), so that the final R,, will not
be affected, as discussed later on. In this region, the slope of transmission curve
is about 6 dB/octave.

As the panels are moved farther apart, standing waves are set up in the air
space between the panels, and Regime B (or Region 2) behavior is observed.
This regime occurs for the frequency range, as follows:

fo<f<(f,=c/2xd) (4.50)
The sound reduction index (transmission loss) in Regime B is given as
R =R, +R, +20log(4nfd/c) (4.51a)

The latter expression may also be simplified as
R=R, +R,+20log(fd)-29 (4.51b)

The quantities R, and R, are the sound reduction index values for each of the
panels acting alone, which can be obtained using the material of Sec. 4.2 and/or
Sec. 4.3. Eq. (4.51) indicates that a transmission loss of 18 dB/octave can be
obtained in this region. However, in practice, 15 dB/octave is more normal.
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At higher frequencies, the panels are moved sufficiently far apart, the two
panels act independently, and Regime C (or Region 3) behavior is observed. In
this case, the air space between the panels acts as a small room. There is now an
effective sound transmission from panel 1 to small reverberant room to panel 2.
The cavity behaves more like a usual wave field rather than a spring and the two
leaves work independently to give significantly higher R than the combined mass
of the entire partition. This behavior occurs for the frequency range f > f,.

For the regime C, two expressions for sound reduction index are obtained:

Case 1: Empty (air-filled) cavity (no absorbent in the cavity)
The sound reduction index in Regime C (or Region 3), f > f,, is given by
(Beranek, 1971):

R=R +R, +1010g( (4.52)

I R
1+Q2/a)
The quantity o is the surface absorption coefficient for the panels (frequency-
dependent); see the Appendix of Chapter 9.

Case 2: An absorbent in the cavity

It is important to include absorption in form of an acoustically absorbing blanket
between the leaves to damp reverberant field (resonances) in the cavity,
otherwise transmission loss is reduced. In this case, the sound reduction index
reads for f>f, is obtained as (Sharp, 1973, 1978):

2
M M
R= 20105{“’%';2 (4.532)
2(pye)
The latter expression may also be simplified as
R=R/ +R,+6 (4.53b)

One can obtain 12 dB/octave with absorbent in this case. Eq. (4.53b) is
commonly used in building acoustics calculations.

These three main regions are shown schematically in Fig. 4.12. Moreover, at
[=f. or f; coincidence dips lead to more transmission, unless highly damped.
The sound reduction index expressions given in this section apply for the sound
transmitted through the airspace only. If there are interconnections, then a second
path that the sound may take (structure-borne flanking path), which involves
sound transmission through mechanical links between the panels (Fig. 4.7).

Prediction methods for this contribution to the transmission loss are given in Sec.
445,
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Fig. 4.10 Typical transmission loss curve for a composite wall with cavity filled with an absorbent
and without mechanical connections between two leaves, with respect to main regions of the
transmission.

Standing waves in the cavity

At high frequencies, resonances or standing waves appear in the air space. This is
when the cavity depth between the two panels is exactly one-half the wavelength
of the incident sound. The lowest order resonance of the air cavity, f, for normal
incidence of sound wave reads:

c

=— 4.54
h d (4.54)
For frequencies higher than f, it appears additional resonances:
c
=n— 4.55
fa=nss (455)

where n = 1, 2, 3, etc, and d is the cavity width. These resonances cause dips in
the sound transmission loss and the mass law performance will be fairly
degraded. In practice, the resonances appear at lower frequencies when the cavity
width increases, which imply that sound insulation rating R,, (or STC) will hardly
increase when the cavity width exceeds about 20 cm. This concern only double
walls without sound absorbent; with absorbent, the conditions changes radically,
as discussed later on.

Note that one may also check the lowest order resonance along the air cavity:
f=c¢/2L, where L is the longest cavity dimension (finite resonances), which may
lower somewhat the transmission loss for small-size plates.
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Characteristic frequencies vs. angle of incidence

The expressions for fy and f; estimate the lowest frequencies at which either
panel/cavity resonance or standing waves can occur. Physically, these
expressions correspond to the sound field impinging upon the construction at
normal incidence, as indicated earlier. If, on the other hand, the sound field
impinges upon the panel at an angle, ¢, measured from the normal to the panel,
the above expressions are modified by dividing the right-hand side of Eq. (4.47)
and Eq. (4.54) by cos¢. In addition, for any angle of incidence, standing waves
will occur in the cavity at all integer multiples (harmonics) of the expression for
f. given by Eq. (4.55).

Weakly damped air cavity

A weak damped material in the cavity implies that higher sound pressure is built
up in the cavity, which leads to higher sound transmission. This is particularly
the case for window constructions in which the gap between two windows layers
is lined with frame absorbent along the cavity perimeter. The sound reduction
index for such constructions, at high frequencies, can approximately be
determined as (Sharp, 1978)

R=R +R, +10|0g[6¥f dTUj (4.56)

Where ¢ is the sound absorption coefficient for the frame covering the air
cavity, d the cavity depth = frame depth, U the circumference = frame length, S
the panel area. The following empirical values are obtained for ¢ (Brekke,
1980)

0.5 ford £ 20 mm
e 4.57)

10 mm/d ford >20 mm

Practical notes on calculations

e The mathematical expression for transmission loss in the coincidence region is
quite complicated and is rarely used in acoustical planning. Instead one can resort
to approximate methods (e.g. see Sec. 4.3) or use empirical values. It is worth
noting that the field-incidence mass law (i.e., R,~5) is only accurate below half
the coincidence frequency; f < 0.5f.. Therefore, the transmission loss of a single
panel in the double wall may be estimated using the expressions for mass-
controlled region. For f > f,, the expressions for damping-controlled region are
used. For the transmission loss region between 0.5, and f,, one may approximate
the situation by drawing a straight line in between. This rule is verified well




386 Building Acoustics and Vibration: Theory and Practice

using the many empirical results, especially if f; lies relatively high in frequency;
see example 4.4. Generally, the prediction of transmission loss of the coincidence
region is rarely accurately managed by the approximate methods.

o At low frequencies, the finite size of the partition results in higher values than
predicted for infinite partitions.

e When two layers of material such as gypsum wallboard are glued firmly
together, they behave like a single thick layer with an associated lowering of the
coincidence frequency, f,. If the layers are only held together loosely (e.g., with
screws) so that they can slide over each other to some extent during bending
motions, then the coincidence frequency does not move to lower frequencies and
the friction between the layers can also introduce some extra energy losses.

Approximate method

A method to predict the sound reduction index of a double partition in the entire
frequency region, based on empirical data, has been proposed (Gosele, 1980). If
the R, and R, of the single partitions that constitute the double partition are
known, and there are no structure-borne sound transmission, which occurs via
mechanical connections, and the gap is filled with porous sound-absorbing
material, the overall sound transmission loss may be approximated as:

R=~R +R,+ 201og[%J (4.58)
where d is the gap thickness and k, is the dynamic stiffness of the gap, which is
expressed here according to the frequency as

k, =poct/d (for f<f,=cl2ad) (4.59a)
k,=2xfp,c (for f >f,) (4.59b)

Eq. (4.58) can be shown to agree well with a number of performed
measurements.

The method assumes the availability of measured sound transmission loss
data for the leaves (single partitions of the double wall). If, on the other hand,
such data are not available, the author suggested other approximate expressions,
which yields good agreement only well below and well above the critical
frequency but fail in the frequency region near the critical frequency.

Example 4.4: A double wall without mechanical connections between leaves has
the following configuration. The leaves are composed of double layers of
gypsum board (normal), 13 mm on both sides of the wall. According to the
manufacturer, the gypsum board has a density 720 kg/m’ and E-modulus is
2.6x10°. The total spacing of air cavity is 185 mm and is filled in with 90 mm
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mineral wool; the depth of air space is 95 mm. There are 4 steel studs @ 45 mmx
26 mm. Draw the transmission loss curve of this construction. Measured results
for this construction are shown in Fig. 4.11. Assume that energy losses are
mainly due to the material, typical room condition, ¢ = 344 m/s and py = 1.2
kg/m’.

v
Solution
According to the Appendix, the material loss factor may be selected as 1% and
Poisson’s ratio 0.13.

M, = ph=720(0.013)=9.4 kg/m* for each board; each panel consists of two
boards, therefore: M, =M, =18.8 kg/m’.

The mass-spring-mass resonant frequency for the double wall is found from Eq.
(4.47Db)

172
fo_344|:1-8 1.2 ( 1,1 H 611

27| " 0.185\18.8 18.8
¢, is obtained from Eq. (2.129)

( 2.6(10%)
CL =

/
— =7 | =1917 m/s
720(1—0.132)j

The critical or wave coincidence frequency of the gypsum board is found from
Eq. (2.332)

A3 G4 3EY)
m,h 7£(1917)(0.013)

=2618 Hz

Ja=fa=

The calculation of f, is based on the assumption that the steel studs do not add to
the stiffness of leaves in some great extent and so both leaves are only loosely
joined.

The lowest order resonance across the air cavity is:

LR L BTy S
2rd  27(0.185)
P _MAD) _op

(M, +M,) 2m(18.8)

From Eq. (4.30), transmission loss in mass-controlled Region for single
panels:

R(f)=R,(f)=20logM,, +20log f —47.3
2010g(18.8) +20log f —47.3=20log f —21.8
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(Note that this mass law yields only accurate results for f < 0.5f.)
From Eq. (4.36), transmission loss for f> f. (damping-controlled Region) may
be written as

R,(f)=R,(f)=20log18.8—13log 2618 +33log f +10log 0.01— 48 =33log f —87
(E2)

Results of the double wall may now be calculated:
o f=50Hz: f<f
From Eq. (4.49), Regime A:
Ry, =201og(18.8+18.8) +20log(50)—47.3=18.2dB
o f=64Hz: f>fy ,f <fu [<0.5

The case is regime B for double wall and mass-controlled Region for single leaf,
Eq. (E.1):

R, =R, =20log(64)-21.8=14.3 dB

From Eq. (4.51): R, =143+143+ 201og[64(0.185)]-29=21.1dB
NB! The frequency f = f can be considered in the Regime B.
e f=300Hz: f~f,,f >fo.f<0.5f

The case is regime B, mass-controlled Region:

R, = R, =201og(300)—-21.8=27.7 dB

Ry =27.7+27.7+ 2010g[300(0.185)]-29=61.3 dB

e f=1310Hz: f > f,, f=0.5f.

The case is regime C, mass-controlled Region:

R, =R, =20log(1310)-21.8=40.6 dB

From Eq. (4.59), Regime C: R;,, =40.6+40.6+6=287.2 dB
o f=20620Hz: f > f.,.f= [

The case is regime C, damping-controlled Region:

Eq. (E.2):

R, = R, =3310g(2620)-87 =25.8 dB

Rygy =25.84+25.8+6=57.6 dB

e f=5000Hz: f >f,,f>f.

R, =R, =3310g(5000)—-87=35.1 dB

Rspp =35.1+35.1+6=76.2dB

The results are plotted in Fig. 4.11. As can be seen, the deviation between
prediction and measurement is mostly in the coincidence region, due to the
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approximation used by the theory in this region. However, it can be shown that
the final predicted R,, will differ only 1 to 2 dB from the measured one, which is
reasonable for practical reasons.

If one change the wall so that one gypsum layer is installed on one side and
three gypsum layers on the other side, then the great influences on sound
insulation will be observed at higher frequencies, especially at and above the
coincidence frequency.

Steel stud

2 sum board layers,
EIE : 45 mm X 26 mm

13 mm

—

185 mm‘T j - =
1 oo
i

Air depth, 95 mm Mineral wool

b=
50 100 200 500 1000 2000 5000

Frequency (Hz)

Fig. 4.11. Comparison between measured and predicted R for a wall composed of double gypsum
layers on both sides and a double stud skeleton with mineral wool in between, Example 4.4. R,, is
59 dB for the measured curve. ( ) calculated ; (o o o) measured.

4.4.3 Design considerations for composite walls with no mechanical
connections

The insulation of the double wall at the mass-spring-mass resonant frequency, f,
becomes low, as shown in Fig. 4.10. One should therefore strive to lower this
frequency so that it should have no significance for the normal airborne
insulation (R,), i.e., under 100 Hz. At frequencies below f;, the two leaves
oscillate together in phase with each other. The insulation is determined therefore
by the wall’s total surface density, provided that the considered frequencies lie
within leave mass region. Consequently, the sound insulation of a double wall
increases rapidly above the resonant frequency range. However, within the
resonance frequency range, the sound insulation of a double wall is often worse
than that of a simple wall of equal mass. Thus, the mass-spring-mass resonance
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frequency, fo, of a double wall should be as low as possible. These results can
also be concluded from Example 4.4.

The influence of coincidence frequency
As a general rule, it can be advantageous if both leaves have different properties.
It is a special case that if the frequency of first coincidence dip of the leaf lie
within the considerable frequency range. The same coincidence frequency for
both leaves entails that the dip in the isolation curve becomes boosted compared
with a single wall. If, on the other hand, the coincidence frequencies are quite
different from each other (e.g., at least one octave), the coincidence dips of the
two leaves shall be eventually counterbalanced. For design purposes, the
coincidence frequency for the boards in a lightweight double wall should be as
high as possible so that the coincidence phenomenon weakens the sound
insulation of the wall as little as possible. Thus, thin building boards have to be
used in the wall and they should not be glued to each other. In practice, it is
utilized very light elements as surface layers in the double wall, Example 4.4.
The coincidence frequency for these elements will therefore be high at the
frequency range within the wall mass region.

Since the insulation of double wall increases quickly above f;, it is beneficial
to have a big air cavity. In general, the sound insulation (R,) value increases
monotonically with the cavity size; see Table 4.3.

The influence of absorbent in the double wall’s cavity
By introducing an absorbent such as mineral wall (for thermal and sound
insulation) in the air cavity, the resonances (Eq. (4.55)), which reduce the sound
insulation, are damped. A condition for this is, however, that the sound absorbent
materials should have sufficient thickness. This thickness will be adjusted in
relation to the frequencies of those resonances that shall be damped; low
frequencies require big thickness and high frequencies small one. The added
mineral wool can also add mass to the total construction surface density, M, if it
completely fills the airspace of the double wall. This is the reason why in some
cases, the calculated sound reduction index is smaller than the measured one.
Concerning the choice of absorbent, practical tests have shown that the
density of mineral wool (Fig. 4.12) is a secondary parameter, while the most
important variable is the absorbent’s flow resistivity. In general, the flow
resistivity is probably the most important parameter for sound absorbing
materials.
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Table 4.3 Airborne insulation index, R,,, for double-leaf walls with no mechanical interconnections
measured in the laboratory.

Construction sketch Features

‘Wall panels of plasterboard (13 mm)
2 R, ~ 34 dB
771 Fza Cavity width, 25 mm

Same
R,~37dB
Cavity width, 50 mm

Same
R, ~43 dB
Cavity width, 100 mm

Same:
= ! R,~47 dB
Cavity width, 150 mm

" g

Fig. 4.12 Mineral wool, also known as mineral cotton, silicate cotton, stone wool, slag wool, and
rock wool, is an inorganic substance used for insulation and filtering. Mineral wool fibres are used
as thermal, fire, and sound insulators in buildings and HVAC- equipments. Note that in homes and
offices there is a connection between landing fibres and health hazards. These large fibres can
cause typically eye, skin and airway irritation. The picture on the left shows magnified fibres.

With a theoretical and experimental analysis, it can be shown that the specific
flow resistivity should amount to 0.5-1x10* Ns/m* so as to dampen the lateral
sound waves effectively.In turn, this implies that the density should exceed about
16 kg/m’ for glass wool (fibre dimension =~ 6 um, but it be up to 10 gm) and 40
kg/m3 for rock wool, in order to obtain a sufficient flow resistivity. Furthermore,
the density should not exceed 150 kg/m® for completely filled air-gap in order to
avoid the mechanical coupling between the two leaves. When experimentally
compared, absorbents with different densities (< 150 kg/ma) but with the same
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flow resistivity, the result demonstrated that the density of the acoustic absorbent
has a negligible effect on the insulation rating (STC) of a wall (Loney, 1973); see
also Sec. 4.4.4 for further details. Above f,, one can obtain somewhat worse
sound insulation than according to Eq. (4.53) if mineral wool with very little flow
resistivity is used, whereas it is not preferred such high flow resistivity to
effectively dampen the lateral standing waves and thereby obtaining a good
sound reduction index in the frequency range f; to f,. If, on the other hand, an
acoustic absorbent in form of insulation mat (batt or batten) with relatively high
density is used, one can also effectively dampen the standing waves that are
developed in the perpendicular direction whereby the predicted sound reduction
index can be obtained above f,. As a rule of thumb, one can expect that the
higher frequencies due to standing waves in the cavity can be damped with a
3 cm thick mineral wool mat. Nevertheless, with thicker mat, the damping
increases and consequently, the sound reduction index increases somewhat. In
addition, utilization of absorbent in the cavity limit also the coincidence
phenomena, i.c., the better absorbent used the smaller pronounced becomes the
coincidence dip in sound reduction index curve. The effect of filing the cavity o
double wall with an acoustic absorbent is shown clearly in Fig. 4.13. Further, the
influence of absorbents on the R,, value for typical cases is shown in Table 4.4.

160

Steel stud
2 gypsum board, 13 mm 95 \mm x 26 mm

, ~,
P

il #29%%
B 0 o
. / N\
Air depth Mineral wool
95 mm/40 mm

Sound reduction index (dB)

50 100 200 500 1000 2000 5000

Frequency (Hz)

Fig. 4.13 Measured sound reduction index for a wall with or without an acoustic absorbent in air
cavity. The wall is composed of double plasterboards (normal) on both sides and double 95 mm
studs with or without mineral wool in between. R,, for the filled and empty cases are 62 and 50 dB,
respectively.
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It is important to know that the resonant frequency of the double wall, fo,
which in general appears at low frequencies, can not be damped effectively by
the mineral wool even if the whole gap is filled in. Only the mass of the leaves,
M,, and depth of airspace can be changed according to Eq. (4.47) to obtain the
designed resonance of the system.

Table 4.4 Influence of an absorbent, in form of a mineral wool mat, on the R, -value for a
lightweight double wall with one 13 mm plasterboard on both sides.

Construction figures Features

Double wall of single 13 mm plasterboard
e — | Steel beams c¢/c 60 cm
E E 13.5 cm cavity without mineral wool

[ |R,=414B

Same
L 3 [13.5 cm cavity with 3 cm mineral wool,
; E R, ~49 dB

Same
' 113.5 cm cavity with 7 cm mineral wool,
E R, =50dB

Same
= |]3.5 cm cavity with 13.5 cm mineral wool
R, =54 dB

4.4.4 Airflow resistivity and the transmission loss

Airflow resistivity indicates how absorptive a material is by evaluating how
much air can pass through the material at a given volumetric flow rate. Airflow
resistivity is measured according to ASTM test method C522 (1987).
Alternatively, it is determined with standard equipment according to ISO/DIS
9053 (1998). As a measure, the flow resistivity depends on the porosity and
friction between air particles with unit MKS rays/ m (N.s/m%). Subsequently, it is
expected that a better result can be obtained if a there is high flow resistivity, as
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discussed earlier. Fibrous insulations have varying degrees of resistivity that are
largely dependant on the density of the material. Moreover, acoustic absorbents
used within partition cavities require a thickness that fills the entire cavity for
optimal sound control performance. In general, the higher the density, the higher
the airflow resistivity, the greater the potential for sound absorption, particularly
at lower frequencies.

Table 4.5 lists typical airflow resistivity values for the most common
absorptive materials. As can be seen, an absorbent material’s ability to reduce
sound transmission improves with density. Because of their inherently higher
density, the mineral fibre samples deliver noticeably better air flow resistivity
than the glass fibre samples. Note that the manufacturer data should always be
sought first since there are different commercial products with different
properties than what is stated in Table 4.5. For the table, mineral fibre is
inorganic fibers of glass, asbestos, or rock (mineral or rock wool). Glass fibre is a
glass in fibrous form. Cellulose comes usually as spray (see Chapter 1), which is
sprayed onto one surface or blown into the cavity.

Table 4.5 Density and measured airflow resistivity for common absorptive materials (partially
after, Halliwell et al., 1998).

Absorptive Thickness of Average Average Airflow

material batt (blanket) density resistivity (N.s/m4)
(mm) (kg/m?) (= mks rayls/m)

Glass fibre 65 11.7 3600

Glass fibre 150 11.2 4300

Glass fibre 89 12.2 4800

Glass fibre 89 16.4 7900

Mineral fibre 20 25 11000

Mineral fibre 65 36.7 11400

Mineral fibre 89 32.6 12700

Mineral fibre 40 519 15000

Mineral fibre 75 44.2 16600

Mineral fibre 83 98.1 58800

Cellulose wet spray 56.3 NA

Cellulose 90 (blown) 493 33000

The effect of the sound-absorbing material in the airspace results in refraction
of the oblique-incidence sound toward the normal, thereby reducing the dynamic
stiffness of the air between the plates (Beranek and Ver, 1992). The sound-
absorbing material also prevents high sound energy buildup in the cavity. These

Airborne Sound Insulation 395

result in a substantial increase in sound transmission loss. The flow resistivity, o,
of the sound-absorbing material should be about & = 5000 N.s/m* (Gosele and
Gosele, 1977). Higher values of ocan yield, sometimes, only diminishing
returns. The benefits available from using sound sound-absorbing materials with
higher flow resistivity and density are evident at the higher frequencies but not at
the low frequencies.

For a double-wall without interconnections (Sec. 4.4.2), the transmission loss
expressions in the three regions do not contain any parameters to describe the
variation in performance due to different acoustic absorbers in the airspace and it
is a practical problem of some interest to determine this effect. To take into
consideration this effect, the transmission loss may be written as (Fahy, 1985)

R=R, +R, +8.6cd +20log(/k) (4.60)

where o and [ are the attenuation constant (real part) and phase constant
(imaginary part) of the propagation coefficient y of the absorptive blanket, which
is described as: ¥ =a+ jf# and k is the wave number. It is suggested that the
propagation coefficient, y, be taken as (Delany and Bazley, 1970):

@ f —0.595 . ,w f —0.700
y= —0.189(”Lj + J—[l + 0.0978(&j } 4.61)
C o C o

where p, and ¢ denotes the air density and speed of sound in air, respectively.
Consequently, Re{y} and Im{y} of Eq. (4.61) represents & and f in Eq. (4.58),
respectively. Recently, the model of Delany and Bazley has been discussed and
empirical formulas for o and S were suggested (Komatsu, 2008). According to
the author, the new model is more effective than the model of Delany and
Bazley, particularly for the prediction for high-density fibrous materials. Note hat
Eq. (4.60) is derived assuming that there are no connections between the two
panels of the double wall. Further, Eq. (4.60) is valid for od> 1; however, it can
well be used for f > ¢/27d. In general, it can be shown that Eq. (4.60) yields up
to 3 dB contribution to sound insulation than Eq. (4.53a).

In an experimental study in which 360 gypsum board walls with a single
cavity containing sound absorbing material and having the two layers
independent or resiliently connected, the following two empirical expressions are
suggested for the sound insulation ratings STC and R’,, based on regression
analysis (Warnock and Quilt, 1995):

R, =-60.3+ 29.51logM , +322logd - 2. 1x107* o +0.0092b (4.62)

STC =-69.8+33.5logM , +32.2logd —-7x10™* 5 +0.017b (4.63)
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where M, is the total mass per unit area of the gypsum board layers (kg/m?), d is
the cavity depth (mm), ois the airflow resistivity of the sound absorbing material
(mks rayls), and b is the stud spacing (mm). The standard errors of the estimates
are 2.0 and 1.6 dB, respectively. Below 500 Hz, these factors accounted for most
of the variance. Above 500 Hz, stud spacing was not significant.

It is, however, difficult to generalise such formulas, but what is interesting here is
the parameters that are included in these expressions, which indicate that there
are some important increase in the sound insulation that can obtained at lower
frequencies for lightweight double walls, by carefully selecting stud spacing and
the type of sound absorbing material, in addition to wall mass and airspace.

4.4.5 Double constructions with mechanical connections

While some constructions can approach the ideal of double panels without
interconnections, in practice most construction will have some type of rigid or
resilient connection between the panels. It is often necessary to utilize a kind of
fastenings, stiffeners, ties or fixings between leaves of double partitions so as to
obtain the requisite stiffness against lateral loads. If the two panels are both
connected to a single row of stud, the sound transmission loss of the construction
will be less than that for the unconnected double-panel configuration. The
degradation is usually attributed to the presence of “sound bridges’” formed by
the studs connecting the two faces or panels. These stiffeners are normally
carried out with common timber or metal studs or beams. This connection results
in a more direct transmission path for the forced panel vibration (structure-borne
sound) than that realized for unconnected double panels. A similar effect is
obtained at the edges or boundaries of e.g., an ideal double wall if it is built up
against continuous flanking construction or with a common stud. Instructively,
the ideal double layer assembly is a double wall with no rigid mechanical
connection between its two surfaces and can be used as reference for comparing
different configurations of constructions. An asymmetric double wall has two
different critical frequencies of two panels while a symmetric one has only one
coincidence frequency. By incorporating resilient metal channels into one side of
the construction, one attempts to decouple the direct transmission of vibration
and hence reduce the reradiated sound in order to retain the higher sound
transmission loss characteristics of the unconnected double-panel construction
(ideal double wall).

In general, the transmission of structure-borne sound via connections to the
wall’s leaf of the receiving room can be approximated with point or line sound
source in view of the fixation type, which can be carried out either in points or
along the whole beam (stud). The line connection corresponds to the direct
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attachment of the panels to the framework along the entire length of the studs
using either nails or screws. The fixation can give rise to a point sound source if
the contact surface between the wall leaf and the underlying stud approximates a
point; in practice, this is achieved if one uses at the fixation points small (< 5
cm?) interlayer of e.g. plywood (sheet of wood made of 3 or more thin layers of
wood bonded together with glue). d

4.4.5.1 Rigid studs

The structural bending force excites the plate at the fixation area and free
bending waves will spread out in the receiving leaf (see Fig. 4.15). However,
below the coincidence frequency of panel, the sound emission from the free
bending waves is relatively ineffective, as discussed in Sec. 2.15, while the near-
field vibrations around the excitation area have a substantially more effective
sound emission. This results in a transmission loss or sound reduction index
curve, which has a fixed number of decibels, AR,,;, above the curve of mass law
(see Eq. (4.49)) according to the following expression, which has the
applicability in the frequency range, f > fo, f<fu1, f<fo:

R=20log(M,, +M ,)+20log(f)—47.3+AR,, (4.64)

Note that in theory, Eq. (4.64) can be used in the above frequency range.
However, the field-incidence mass law is practically valid up to 0.5f,, as
discussed earlier (see also Sec. 4.9) and so the results will actually be valid for f'<
0.5fc1, £ < 0. 5.

The situation is illustrated in Fig. 4.14. Above the cut-off frequency, f,, the
slope of transmission loss curve is 6 dB/octave, up to the coincidence region. The
transmission loss curve in the transition region between f;, and f, is determined
mostly according to Eq. (4.64); it is obtained by a line connecting the
transmission values at f; and f,. In the case that the wall leaves are identical or
have equal surface density (mass per unit area), the value of AR, can be between
6 dB, when there is a total transmission via the connections (e.g. some rigid suds)
and 30 dB when the structural transmission has been reduced to a practical
minimum (e.g., using some types of resilient studs). The cut-off frequency, f;, is
the frequency at which the 6 dB/octave line starts (Fig. 4.14), and may be
approximated as the frequency at which the transmission, Eq. (4.64) becomes
equal to the transmission loss, Eq. (4.51); f, typically lies between 220 Hz and
250 Hz, for typical building constructions.

Derivation of ARy
Consider the case illustrated by Fig. 4.15. The following assumptions are made:
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e the sound bridge is very stiff (rigid) (e.g. timbre stud), and so velocities on both
sides of the stud are equal, v, , = v, ; the elastic connections are treated later on;

o the mass of the sound bridge is unimportant in relation to the total construction
mass and is totally stiff;

e a sound absorption material is installed in the cavity; and

e the absorption of the cavity boundaries is perfect, that is, there are no
reflections from the cavity boundaries that could increase the sound energy inside
the cavity.

The sound insulation of a double wall is determined by summing the sound
power that is transmitted via sound transmission bridges (connections), W, , and
the sound power that is radiated by the ideal double wall without mechanical
connections (i.e. in the air cavity), W,, Consequently, the total sound
transmission loss of the double wall can be written as

_ Wz,b
R=R, -10log| 1+~ (4.65)
W2,a
6 dB/octave
Eq. (4.51 .
o 9 (4.51) N /Eq. (4.64)
UJ . A °
50— I
= ARy ‘e
2 4o /\
24
30 L Eq. (4.49)
(mass law)
20
=T 1 T 1T 1
fo ) fy, 05f | f

125 250 500 1000 2000 4000

Frequency (Hz)

Fig. 4.14 Predicted and measured transmission loss curves for a double wall with common studs.
The measurement (o) is for a double wall consists of 16 mm gypsum board (on both sides) +
timber studs (50 mm x 100 mm, c/c-spacing 40 cm) + 60 mm mineral wool blanket, and a resilient
interconnection between the gypsum board and stud on one side. The transmission loss adjustment,
ARy~ 13 dB.
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/
Vip Bending wave

V2,a ¢

Fig. 4.15 Transmission of bending waves from panel 1 to panel 2 through a sound bridge in a
double partition with connections. The two plates are assumed to be infinite laterally in which free
bending waves are propagated. v, is the local (particle) velocity of the panel at the stud and v, is the
particle velocity of the panel, assuming there is no connection between the panels (i.e., ideal
double wall).

where R; is the sound reduction index of ideal double wall (i.e., unconnected
double wall). As discussed in Chapter 2 (Sec. 2.15), for frequencies less than f,
the radiation from a panel is due to the near field, and with the help of Table 4.6,
the W,/ W,,, is given by:

B 2
Woo _nyp| Vo

— (4.66)
W,. S <V, >
8¢? )
W= _3f_2 (for f<<f,, point sound source) (4.67)
73 c2
2cL .
V= (for f<<f.,, line sound source) (4.68)

c2

where n is the number of line or point sound bridges within the total transmission
surface S (m?), v, 18 the vibration velocity of the panel in which the transmission
forces of the sound bridges act, v, is the vibration velocity for the wall’s leaf of
the receiving room for an ideal double partition, f;, its coincidence frequency, L
is the length (m) of line source (sound bridge), and the bracket < > denotes the
mean velocity in time and space; see Fig. 4.15. The assumption of line-source
assumes that L is large in relation to the wavelength in air. Further, it appropriate
to rewrite Eq. (4.66) as

2 2
W. n V. <V, >
T2b MV ab L (4.69)
W, S \<v,>) <V, >

,a
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where v, is the vibration velocity of the wall’s panel of the sender-room for the
ideal double wall.

The relation between the average velocity in panel 1 and the local velocity at the
sound bridge is determined by the two plate input impedances (point-or line
impedances) Z, and Z, (Sharp, 1987):

(4.70)

~2 2
<> |Z,+7,]
~2 s

Vab ‘ Z J
This expresses indicates that there is a reduced movement at the sound bridge
due to common effect of plates. From Table 4.6, the impedances are expressed as

_4c’M

z

(Point impedance) “@.71)

c

Table 4.6 Important quantities for the excitation of plate through point, line or edge interconnection
(after Cremer et al, 1988; Kristensen and Rindel, 1989). M, is the surface density, f. the critical
frequency, ¢ the sound of speed in air, g the air density, L is the length of line source, and vy is the
effective (rms) value of the vibration velocity at excitation.

Sound Total radiation
Type of excitation Impedance Mobility radiation from | factor, x
near field
! : V4 : 7o f,
\/ ol zfc 1702p0c—83C —n| 1+ 7 £
Point (number of 7 f. 4c°M 7 f; n
points #)
i 1
Y J 777 ~ 2c !,
l‘lJ‘ . fc/f v2 c L 1+£ e
[ 21+ HM cL[f]f, | 4M cL 0P A w7
Line (length L)
M s o en JTTT| Ao | PP b 16 T e
I S el I Lt . '\ f
Edge (length L,)
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Z=2(1+ )M ,c(f/£.)"* (Per unit length, line impedance)  (4.72)

If one further assumes that v, , will not be affected if the partition’s leaf number 2
exists or not, then the ratio v,/ v,, is determined as the difference between the
transmission loss of the ideal double wall and the transmission loss of leaf
number 1 as

. 2
<V, >
lOlog[%;J =20logM , +20log f +20log fd —76.3 (fo <f<f) (4.73)
v2,a
- 2

<V, >

101og[~—’J =20logM , +20log f ~41.3  (f >f.) (4.74)
< Vou >

For f > fo, R, of the ideal double wall is expressed by Eq. (4.51b). Above f,, W,
IWye>> 1 so that [1+(W,,, /W, )] = W, /W, .. Consequently, by combining Eq.
(4.73), Eq. (4.70), Eq. (4.69), and Eq. (4.66) with Eq. (4.65), the following
expression of transmission loss is obtained for f > f,, f > fo:

7 2
R=20logM , +20log f —47.3—10log| 2¥ |21 4.75)
Z+7Z,
The latter expression is comparable with Eq. (4.64) from which AR, is given by:
M \Z
AR,, =20log M@ +Z) | 0 (ny (4.76)
(M, +M,)Z, S

For line connections in form of parallel studs with c/c spacing, b (m), the area S =
nbL (mz) and by substituting Eq. (4.68) and Eq. (4.72) into Eq. (4.76), the
following expression is obtained:

2
My Jfn +M
AR,, =10log f,, +10logh—23.4, f,, = — Jeo ¥ M3y ]l (4.77a, b)
M, +M,

where the c/c spacing between studs, b=S/nL, n is the number of line sound
bridges within the total transmission (panel) surface, S, and f,, is a combination
of the two plates critical frequency for the case of line excitation. The constant
23.4 is the evaluation of the parameter, 10log(2¢/71). A special case is obtained if
the double wall is constructed of two identical exterior surfaces with line
connections. In this case, Eq. (4.77a) is reduced to:

AR,, =10log f, +10logh—-23.4 4.78)

In the same way, for evenly distributed point connections with a c/c distance, e,
(m), one obtains:
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M +M
AR,, =20log f,, +20loge—44.8, f, =<2~ —s22c (4793, b)
Mxl i Ms2

The quantity f;, is a combination of the two plates critical frequency for the case
of point excitation, and ¢ = (S/n)"*. The constant 44.8 in Eq. (4.79a) is the
evaluation of the parameter, 10log(8¢*/ ). For the special case with two identical
surfaces, Eq. (4.79a) becomes:

AR,, =20log f, +20loge—44.8 (4.80)

Edge connection

For the interconnections along the edge of a double construction, the radiated
sound power is about half of the power for line excitation in the middle of the
plate. The input impedance of the wall with edge line is expressed as

Z=4(1+ )M c(f] )" (Per unit length) (4.81)

The factor, w, in Eq. (4.76) for edge line sound source is expressed as

L

w=-"0 (forf<<fy) (4.82)
fcl

where L, is the length of edge interconnection. Consequently, substituting Eq.

(4.81) and Eq. (4.82) into Eq. (4.76), ARy, for a double wall with edge connection

becomes:

AR,, =10log f., +10log(b,) —20.4 (4.83)

where b, = S/ nL,, L, is the length of edge interconnection, f;; is expressed by Eq.
(4.77b), and the constant 20.4 is the evaluation of the parameter, 10log(c/7).
Comparing Eq. (4.83) with Eq. (4.77a) shows that a difference amounts to about
3 dB between the two cases.

Discussion

The transmission loss adjustment, AR,,, derived above for the three cases point,
line and edge sound bridges concerns the forced sound transmission and not the
resonant one. They are, thus, valid for f < f. and yield good results up to 0.5f..
Deterioration in prediction can be seen for f> f.. In this case the resonant sound
transmission should be applied, as discussed below.

Total radiated power from the plate

If a large plate is excited by a harmonic force F, free bending waves will be
generated and propagated away from the excitation point. Above the critical
frequency, the sound is radiated from the whole plate and the radiation efficiency
or factor, ¢ = 1. Below the critical frequency f;, the pressure variations at the
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plate surface are eliminated and no radiation occurs except from the edges and
from a region around the excitation point (near field), as discussed in Sec. 2.15,
Chapter 2. When a force excites a point on the plate, the radiated sound power
from this plate at frequencies lower than f, (forced transmission or near field near
field sound radiation) becomes:

(4.84)
c

where 7, is the effective value of the velocity at the excitation point. In this case,

it is not appropriate to describe the sound radiation with a radiation factor

because the radiated sound power depends on the plate area, which is principally

can be infinite. Correspondingly, when a plate is excited by a harmonic force

along a line with a length L, the radiated sound power becomes

W, = pycvy 148 (4.85)
c2
The quantity W, is the radiated sound power due to a near field radiation (near
the excitation point). The total radiated power from the plate is obtained by
adding the radiation power, W,, due to plates eigen vibrations (or resonant/free
radiation), which can be expressed with radiation factor, o, to the near field
radiation, Eq. (2.317). Accordingly,

W=W,+W,, W, =p,c<V’>S0 (4.86a, b)

Where <72 > is the square velocity average over the plate area, S, except a very
small area around the excitation point or line. Consequently, the power ratio
expressed by (4.66) should be reformulated in accordance with Eq. (4.86) so that
both forced and resonant transmissions are included to cover the excitation
frequencies above and below the coincidence frequency. How strong the eigen
vibrations that are excited due to force effect is the subject of impact sound
insulation treated in Chapter 5.

Derivation of ARy, with respect to total radiated power
For the frequency range above the critical frequency of both panels, expressions
may be derived using statistical energy analysis; see Chapter 2. In this case, not
only near field radiation occurs but also resonant one. The power that is
transmitted to plate 2 (Fig. 4.15) causes: (1) near-field radiation from the effected
region with the power, W,,; and (2) building of eigen vibrations in the plate and
subsequently resonant sound transmission with the power, W,,.

The relation between the velocity of excitation point, v,,, and the velocity of
eigen vibrations,v,,,, may be obtained by considering the energy balance of the
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power transmitted from plate 1 to plate 2 via the stud (Kristensen and Rindel,
1989):

W, =¥,,Re{Z,} =27 f M ,S <¥;, >1, (4.87)

where 7, is the total loss factor of plate 2 (the receiving plate). Eq. (4.87) may be
combined with Eq. (4.86b) and the resonant radiated sound power, thus,
becomes:

v, Re{Z,)pyca,
2w f M,m,

W,, =<¥,, > p,Sco, = (4.88)

The sound radiation from near field, W,,, depends on the excitation type, as
shown in Table 4.6. Accordingly, the total radiated sound power for a specific
sound bridge may be written in the following form:

W,, =W,, +W, =W, x (4.89)

where « is the total radiation factor of resonant transmission contribution. The
factor, x; for a point sound bridge is expressed as

K, =1+ 0y Jer
an, f

Correspondingly, this factor for line and edge connections may be found with the
help of Table 4.7 as

(4.90)

ch 0-2 ch

o
K =l+—2 |22 g =1+—% |22 (4.91a, b)
2n, anm N f
If one, for instance, includes the resonant radiation the previous expressions of
ARy, the general expression of ARy, of rigid studs for the three excitation cases
(point, line, edge) will becomes:

Line source: AR,, =10log f,, +10logb—10log x, —23.4 (4.92)

Point source: AR,, =20log f,_, +20loge—10logi, —44.8 (4.93)

P
Edge source: AR,, =10log f., +10log(b,)—10log x, —20.4 4.94)

The importance of the resonant radiation would be that ARy, is reduced when
frequencies approaches f,, when the radiation factor grows; ARy is here a
negative value. For f > f», 0, =1 and x>>1, which implies that AR, becomes
little reduced. Note that Egs. (4.92)-Eq. (4.94) can be used for all frequency
range. However, the k factor (resonant transmission) is only important at f > f.
For frequencies f < f., o= 0 (see Eq. (2.333)), and « =1.0 and subsequently these
expressions are reduced to the previous derived expressions of AR,; e.g., Eq.
(4.93) is reduced to Eq. (4.79a). This is important result since these general
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expressions requires quite lengthy calculations (for ¢ and #), if they are applied
for all frequency regions.
The transmission loss of the double wall with mechanical connections for f>
f. can be calculated, using the general expression for double connected walls:
R=R,,, +AR, (4.95)

where R, is the transmission loss of the ideal double wall (unconnected double
wall) and AR, is the calculated adjustment.

In general, massive (heavy) double constructions are particularly sensitive for
sound bridges because the critical frequency typically is low, which implies a
considerable resonant sound transmission; some experimental results can be
found in Vigran (1979).

Example 4.5: The wall with mechanical connections between the two leaves is
constructed in the way shown in Fig. 4.16, where it is shown also the measured
transmission loss. The density of the two gypsum boards is 800 kg/m’ and that
the critical frequencies for the two leaves are determined as f,, = 3556 Hz and
f:2 = 2462 Hz; and characteristic impedance of air, poc = 344(1.2)= 413 kg/m’.s.
The panels are directly attached to the framework along the entire length of the
tree beams using screws. The total loss factor of plate 2 is assumed to be mainly
due to material losses, 7 = 1.8%. Draw the transmission loss curve.

Solution

M, =800(0.013) =10.4 kg/m’

M, =800(0.009) =7.2 kg/m’

The mass-spring-mass resonant frequency for the panel is found from Eq. (4.47b)

1/2
fozﬁm—l‘z e +i =142 Hz
2 0.076104 7.2

The lowest order resonance across the air cavity is:
_ ¢ 344
Je=0na ™ 27(0.076)
For frequencies f < 0.5f. = 1250 Hz, which lie in the mass-controlled region,
the sound reduction index of each panels reads from Eq. (4.30).

Ri(f)=17.2+20logf-47.3
Ry(f)=20.3+20log f—47.3
Accordingly,

Ri(f)+ Ry(f)=40log f-57.1

=721Hz
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The transmission loss, R, of the ideal double wall at frequencies:
fo(=142) < f< (f,=721) is obtained from Eq. (4.51b)

R(f) =40log f-57.1 + 20log fd —29 = 60log f— 108.5

Then R (142 Hz) = 20.6 dB and R(721 Hz) = 63 dB

With this expression, the high frequency (the upper line) is drawn.

For f<f;, the sound reduction index both panels is obtained from Eq. (4.49)
R(f) =24.9 +201ogf—47.3, then R (100 Hz) = 17.6 dB.

With this expression, the low frequency (lower line) is drawn.
The case is line sound bridges, and so ARy, is determined according to Eq. (4.77):

10.4~+/2462 +7.24/3556

10.4+7.2

AR, = ZOlog{

}+ 1010g(0.6)—23.4=9 dB

Accordingly, the transmission loss of the double wall as obtained from Eq. (4.64)
becomes:

R(f) =249 +201log f—47.3 +9 =20log f— 13.4 (f,<f<0.5f.)

The cut-off frequency, f;, = 240 Hz, since: 20log 240 — 13.4 = 60log 240 — 108.5
The results of R( f) can be extended up to f,, but the mass law yield good results
up to 0.5f.

For frequencies f>f,:
The radiation efficiency of the gypsum board o= 1.0, Eq. (2.333), and # = 0.018.
The total radiation factor is obtained from Eq. (4.91a):

K =10log| 1+ 79212 |  1g10g] 14 ZD282 1 1610014 1.074x10° )
an, f 4(0.018) f

From Eq. (4.92), ARy, at higher frequencies becomes:

AR,, (f)=9—10log(1+1.074x10° f ™)

From Eq. (4.36), transmission loss for f> f, (damping-controlled region) may be
written as

R,(f)=2010g10.4—1310g3556+33log f +101log0.018 —48 =33log f —91.3
R,(f)=20log7.2-13log2462+33log f +1010g0.018 —48 =33log f —92.4

R (f)+R,(f)=066log f —183.7

The total transmission loss of double wall for f> f; is obtained from Eq. (4.53b)
R(f)=R(f)+R,(f)+6=066log f —177.7

The transmission loss of the wall, thus, becomes
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R(f)=66log f =177.7+ AR, (f) (fZfa)
R (2462) =38.7 dB

For demonstration, if one uses, instead, the mass law, Eq. (4.64) together with the
new expression of ARy, (f), then the result R (2462) = 38 dB, which is near to the
above value, but in this case the increase in transmission loss will be slow
compared with using the high frequency-transmission loss of the ideal double
wall.

The results of transmission loss are plotted in Fig. 4.16. As can be seen, the
agreement between measurements and prediction is reasonable. The prediction
results may somewhat be improved if one calculates exactly oand #.

9 mm gypsum board
T T 7 cm glass fibre, density 60 kg/m®
125 mm)x 3"(0.076 mm) timbre stud, ¢/c 60 cm
| fi 6y | f 05fe | e 13 mm gypum board
125 250 500 1000 2000 4000

Frequency (Hz)

Fig. 4.16 A comparison between measured and calculated values for a 10 m?® typical double
construction of gypsum layers and common studs. (= =), theoretical predicted values for wall
without connections; (eeee), measured values; (=== predicted results for the construction with
connections, Example 4.5.

4.4.5.2 Non-rigid studs

The above theoretical relations concern fully stiff (rigid) mechanical
interconnections (e.g., wood studs or load-bearing steel studs). For
interconnections that are not rigid (e.g., resilient steel rails, thin steel studs, light
gauge non-load-bearing metal studs between two leaves) expressions can be
derived to take account of the compliance of the connection. Consider the double
construction shown in Fig. 4.15. Assume that the mechanical connection is




408 Building Acoustics and Vibration: Theory and Practice

elastic. The sound bridge, whether it is point shaped or line one is characterized
by the impedance Z,, which can, in general, be defined as

Z,=—1t (4.96)
Vipg ™ Vou

where F is the force in the sound bridge that acts on the plates, v, ;, and v, are the
velocity of two plates at the sound bridge; Eq. (4.96) indicates that when the
beam is rigid, then Z,— . A bending wave that propagates in plate 1 with a
velocity amplitude v, ,, will have a reduced amplitude v, at the sound bridge
because of the plate mobility ¥, (also called mechanical admittance). In plate 2,
the velocity out of the sound bridge, v,,, is determined by the plate admittance,
Y,; see also the mobility method in Chapter 11. These two situations are
expressed as follows:

Vip =V ~HF and v, =1 F (4.97a, b)

Subsequently, a new bending wave will generate in plate 2. The power that is
transmitted from plate 1 to plate 2 via a stud can be determined as (Ver, 1971):

2
Z,|'Y.
W, =<2 > ZIRe - - (4.98)
1+2Re{Z, }(Y, + 1) +|Z,| (Y, +1)
For a very stiff (rigid) sound bridge, |1Z,l— < and Eq. (4.98) is reduced to
W, =<¥7, > % (4.99)
Y, +Y,)

Lets introduce a coupling factor, % to describe the transmitted power via elastic
and rigid sound bridge so that when ¥ =1, the stud should be considered rigid.
Subsequently, dividing Eq. (4.98) on Eq. (4.99), ywill take the following form:

2
_ Z,| ¥+ 1)
142Re{Z, }(Y, + V) +|Z, [ (v, + 1)

(4.100)

For an elastic sound bridge, one may approximate Z, as (Kristensen and Rindel,
1989)

k(/

Z, ~—"-

; (4.101)
jo

where k, is the dynamic stiffness of the sound bridge, which is assumed be elastic
and the internal damping is often neglected (viscous damping). Thus, Eq. (4.100)
is reduced to:
ki +Y,)?
@ +k; (Y, +Y,)*

(4.102)

Airborne Sound Insulation 409

Note that if the sound bridge is considered viscoelastic (e.g. rubber), then the
internal losses (damping) may also be expressed using a complex modulus E
(1+)). The coupling factor as expressed in Eq. (4.102) can now be solved with the
help of the mobility formulas in Table 4.6 for each type of elastic sound bridge,
i.e. point, line and edge connection. The results become:

y =|14] L My (4.103)
» .
Kap Lo
2,243 g2 -1
,q:[1+§35i;12_42 (4.104)
diJcl
2 232,27t
K:P+%L%%¥%L} (4.105)
deJ cf

where M,, = M M, | (M,+M,) and the subscripts p, I, and e denotes the point,
line and edge connections, respectively. The frequencies, f;, and f,, are expressed
by Eq. (4.79b) and Eq. (4.77b), respectively. The terms k,, is the stiffness of stud
with point connection to the plate (N/m), k and k,, are the stiffness of stud (per
unit length, L) with line and edge connection (N/m?), respectively.

The dynamic stiffness of sound bridges for point and line connections, k,,
may be simply empirically calculated by choosing a value that give the best fit to
experimental data for the resilient rails or steel studs. Theoretically, the spring
constant or stiffness for a simply supported beam undergoing bending vibration
is equal to (48EI/L’), and for clamped ends, (192EI/L’), where E is the elasticity
modulus of the beam and L is the length. When source is bolted to the beam,
angular motion at its free end will be hindered and this will result in increasing
the spring stiffness of the resilient element by a factor of four. Instructively, for
an elastic material with a thickness d, k,= E,/ d (N/m®) where E, is the dynamic
stiffness (elasticity modulus) of the material; see also Chapter 11 and Sec. 5.4.1.

If one includes now the case of resilient studs in the previous expressions of
ARy, Eq. (4.92)-Eq. (4.94), the general expression of AR, for the three excitation
cases (point, line, edge) will become:

Line source: AR,, =10log f,, +10logh —10log k, —10log Y, 234 (4.106)
Point source: AR,, =20log f,, +20loge—10log k,—10logy, —44.8 (4.107)
Edge source: AR, =10log f,, +10log(h,)—10logx, —10log ¥, —20.4  (4.108)

There expressions are general in the sense that they cover both rigid and elastic
studs, below and above the coincidence frequency. If there are rigid studs in the
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double wall, then y =1, and if the resonant radiation is not considered (i.e., for f <
f.), then x= 1, and so Eq. (4.106)-Eq. (4.108) are reduced to Eq. (4.77a), Eq.
(4.79a), and Eq. (4.83), respectively. The transmission loss of the double wall
can then be estimated using the general expression, Eq. (4.95).

4.4.5.3 Discussion of results and assumptions

The derivation of ARy, is based on the assumption that the transmitted forces via
sound transmission bridges are only directed in perpendicular direction towards
the partition leaves. This simplification still provides a useful and practical
construction basis, as demonstrated in Example 4.5. Instructively, it can be
shown that that if the partition leaves have higher bending stiffness (i.e. EI ) than
the interconnections (studs), then ARy, is determined by the bending transmission
via studs, as done before. However, if the bending stiffness of the partition’s
leaves is substantially lower than the bending stiffness of interconnections, then
ARy, is determined mainly by the longitudinal vibrations in the partition’s leaf
no.l that are transmitted via the interconnections. The longitudinal vibrations
refer to the movements of plate in the lateral direction. This implies that if it is
desired to improve the sound insulation for a construction with rigid studs, the
longitudinal transmission from the sender-room’s leaf (leaf no. 1) must be
observed. For instance, a 1" (25.4 mm) thick timber stud has already a bending
stiffness magnitude of about 700 Nm perpendicular to the fibre direction and
perpendicular to the direction of vibration propagation in timber studs, while a
0.4" (10 mm) thick chipboard (or particleboard: chips of wood compressed and
glued into sheet form) has a bending stiffness of about 300 Nm irrespective of
the propagation direction of bending waves, and the sheet metal in a typical thin
sheet metal stud (thickness sheet metal plate is about 0.5 mm (0.02")) has a
bending stiffness magnitude of about 2 Nm. The low bending stiffness of the
sheet metal is typical in relation to the bending waves that are propagated
perpendicular to the thin sheet metal stud, while normal sheet metal studs have
substantially higher bending stiffness for bending waves that are propagated
parallel with the studs.

Furthermore, it is assumed that that neither empty cavities nor the attenuation
of sound while passing through a porous material is considered. For the latter
case (i.e., the influence of absorbent porosity), this effect can have an influence
on the results at higher frequencies and one may check this by comparing with
the results of Sec. 4.4.4. On the other hand, the influence of absorbent in the
cavity is clear as the double partition that have absorbents in the cavity will have
higher transmission loss than those partitions with empty cavity; see e.g., Fig.
4.17. It is, however, not necessary to fill out the whole cavity with absorbents in
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order to obtain a relatively good sound insulation value, as the biggest
improvement of the sound insulation is obtained with the first centimeters of the
mineral wool filling. Apart from flow resistivity, the total absorbent volume and
absorbent thickness are the most significant parameters for the choice of
absorbent, which implies that the biggest absorbent volume and the thicker
absorbent the better sound transmission loss is obtained.

Fig. 4.17 shows the transmission loss of different wall double constructions.
As can be seen, the use of resilient mountings or studs contribute considerably to
transmission loss, while rigid timber studs perform worse than a cavity wall with
only absorption filling and is comparable with a cavity wall without studs and
absorption inside. Consequently, when the interconnections in a connected
double wall are made softer, a higher sound transmission loss is obtained. One
can also see the obtained improvement due to the absorption in the cavity. In
addition, a resilient interconnection between the stud or beam and the leaf will
result in higher sound insulation. Such a situation has already been illustrated in
Fig. 4.14, for which Eq. (4.78) predicts ARy = 8 dB whereas the actual value of
AR, = 13 dB. Consequently, to obtain stiffeners that are weak towards bending is
to make use of special studs that are made of sheet metals instead of massive
timber studs. This practice is very common in plasterboard constructions.

Construction section

R (dB)
y

)

N

]

\

7 lm

A f.

50 100 200 500 1000 2000 5000

Frequency (Hz)

Fig. 4.17 Measured sound reduction index (transmission loss) of different wall double
constructions. (I) double walls with only plasterboards; (II) same as (I) but with mineral wool in the
cavity, (II1) same as (II) but with rigid timber studs; (IV) same as (II) but with elastic steel beams
(after Northwood, 1970).
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To compare the line sound bridges with point ones, consider, e.g., a
symmetrical plasterboard construction composed of 13 mm (0.5 in) thick
plasterboards and with c/c-spacing for interconnections equal to 0.6 m. It can be
obtained about 10 dB higher sound insulation value with point interconnections
than with line interconnections. It can be shown experimentally that the single-
sided point interconnection and double-sided point interconnection have equal
transmission loss value.

4.4.6 The influence of stud configuration on sound insulation

The mechanical fixings or stiffeners, in form of studs or beams, between the two
walls are essential for structural support and stability. On the other hand, they
will create noise bridging transmission paths (structure-borne sound) that limit
the maximum noise insulation obtained (equivalent to an electrical short circuit),
as discussed earlier. However, it is possible, by implementing a suitable design,
to eliminate, with a great extent, the insulation reduction by these connections.
The distance between the stiffeners (i.e., studs or beams), D, has a specific ratio
with respect to the wavelength at coincidence, 4. (= c/f,, where ¢ is the sound
speed in air, and f, is the critical frequency of the leaves). By considering this
ratio, as presented in Table 4.7, the stiffeners will not greatly reduce the sound
insulation of the double wall. For lightweight double walls, it is often possible to
fulfill these criteria. Take, for example, a typical plaster (gypsum) wall with
resilient steel studs. Herein, the coincidence frequency is approx. 3150 Hz, which
implies that 4. = 344/3150 = 0.11 m. With a standards stud spacing of 60 cm (24
in), the ratio D / 4,= 5.5 > 5; this is acceptable according to Table 4.7. If, on the
other hand, the flexible steel studs are replaced by rigid timber studs, the criteria
would not be fulfilled. Plaster walls with timber studs yield also, in general,

worse insulation than similar walls with resilient steel studs (often in the range of
2 to 3 dB).

Table 4.7 Type of connection between two faces of double-leaf wall and the optimum ratio of
stiffeners distance, D, and coincidence wavelength 4.

Connection type D/,
Resilient, parallel (standard) >5
Resilient, staggered >7
Rigid, parallel (standard) > 10
Rigid, staggered >15
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Table 4.8 compares different types of double wall configurations and possible
improvement in their sound insulation. Note that the same conclusions drawn
from the considering the sound reduction index, R,,, are valid also for the STC.

4.4.7 Double constructions in practice

As discussed earlier, when the gypsum board in a wall is solidly fastened to the
wood studs on both sides, much of the sound is transmitted through the studs.
Therefore, it is significant for the two wall surfaces to be supported
independently from one another in order to control sound transmission. This can
be done by fastening the gypsum board on each side of the wall to different lines
of studs. In this context, the mechanical connection between the layers of
wallboard can be reduced by the use of staggered wood studs, separate rows of
wood studs, or a single row of wood studs with resilient metal furring strips to
support the wallboard layers independently of each other. In general, to obtain
higher R, ratings, it is necessary to use a staggered-stud construction (refer to
Table 4.3, Table 4.8 and Table 4.9), which provides better vibration isolation,
and more layers of gypsum to add mass. A simple effective technique for double
wall with wood studs can be the first stud and last stud are connected with
gypsum boards via resilient channels to provide the necessary stiffness of the
wall while the other in-between studs are unconnected with the panels. The idea
is to provide stiffness without losing the high sound insulation. Table 4.9 offers
some representative STC (=R,,) values for typical constructions. In case of two
layers of gypsum board indicated in Table 4.9, the layers are assumed to be
screwed together. As can be seen, the presence of the sound absorbing material
will increase the sound insulation relative to the same wall without sound
absorbing material. Best results are obtained when there are two layers of
gypsum board on both sides of the wall in conjunction with resilient channels and
absorption in the cavity. Technically, because of the mass-air-mass resonant
frequency, fp, for the small airspace between gypsum board layers due to resilient
channels, the sound insulation value would be the same or lower than that for the
same construction with a single layer. Note that walls with 16 mm board would
be better than those with 13 mm board by a few decibels. Moreover, R,, values of
60 dB or more can be obtained if the air space is large enough and enough
wallboard is used.

Resiliently mounted wall and ceiling gypsum board (drywall/ sheetrock/
wallboard) is fast becoming a building industry standard for reducing sound
transfer between rooms in homes and offices.
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Table 4.8 Different types of double wall configurations and their acoustical situation. The increase By isolating the mounting of the wall panels from the studding, (or joists), sound
| of R,, (dB) is equivalent to STC (point).

travel through the wall to the other side is greatly reduced (e.g., loud shouting is
Double-wall cross-section Properties and the acoustical situation not heard). This is a real plus for apartments and rooms that should be quiet, such
Gypsum boards (drywall) with mechanical connections: Filling as bedrooms, for instance. Several methods to provide resilient mounting of these
——— | the cavity between vertical studs with standard glass fiber (or building wall and ceiling panels using drywall furring channel (DWEFC) have
' <7 | mineral wool) can improves the R, rating by 3-6 dB. Using a been provided to the marketplace.
/ heavier 12.2 kg/m2 (2.5 1b/ft?) mineral fiber acoustic insulation
“4 | can improve it little further, adding up to 9 dB compared to a
wall without insulation.
A double wall has vertical wood or steel studs every 0.4 m (16 Table 4.9 Approximate STC ratings for walls with 13 [mm gypsum board on both surfaces (after
in) or 0.8 m (24 in); standard is 0.6 m (24 in). Gypsum board is Quirt, 1985) "
screwed to the front and back of the stud. Regardless of how
the cavity is filled with insulation, sound vibrates the gypsum Layers of gypsum board on each wall surface
| board, which vibrates the stud, which vibrates the gypsum 1+1 1+2 2+2
board on the other side, which vibrates the air to radiate sound Structural support with sound |without |with sound|without |with sound |without
in the room. Since wood (rigid stud) transmits sound well, a absorbing  [sound absorbing [sound absorbing |sound
standard wood stud wall doesn't do well for soundproofing. A material absorbing |material  |absorbing |material  |absorbing
steel (flexible) stud with a "C" shape cross-section performs material material material
better. The "C" is resilient and absorbs sound, improving the
R, rating by up to 5 dB over wood 90 mm 24 gauge steel studs (45 39 49 44 53 50
. 38 x 89 mm wood studs
Double wall with no mechanical connections: A staggered wall with resilient steel, channels 148 40 52 45 >4 31
uses studs in a crossing (zigzag) pattern, one forward, one on one side
back, one forward, and one back. The forward ones form the 38 x 89 mm wood studs
wall for one side, and the back studs for the other side. The with resilient steel, channels |49 40 52 46 55 52
offset from the forward to the back studs is usually about 50 A on both sides
mm (2 in), so if the wall is built with 50 mm x 100 mm (2 in Staggered 38 x 89 mm 49 40 52 46 55 52
! x 4 in), the total wall thickness is about 0.15 m (6 in). The wood studs
staggered construction decouples the front wall from the back Double row of 38 x 89 mm_ |57 46 60 52 63 57
wall, preventing vibrations from traveling through the wall. wood studs with 25 mm gap
The wider wall also has more space for insulation. The effect
| is to improve the wall by up to 10 dB between
150 mm load-bearing steel |56 45 58 51 61 56
| A double wall with double studs separated by air gap. The studs with resilient metal
outer surfaces are covered with thick gypsum board and the channels on one side
eqtire depbleawidih cavitys hilled watiynsnlaniops Ll%(e fhe 'Some deviations from the listed values may be expected because of variations in type of wallboard
staggered stud wall, th? e bagk .Of the wgll d.o PUSHErEle (e.g., fire-rated versus standard), wallboard attachment, type and thickness of absorptive material,
common stud, preventing the transmission of vibrations . -
through the stud. This may improve the R,, rating by about 15- and stiffness of steel studs or resilient channels.

20 dB compared to a single wall. Using a wider 0.15 m (6 in)
stud instead of a 90 mm (3.5 in) stud only performs
acoustically little.

; X The common internal partition used in single family homes with drywall 3
Adding another layer of gypsum board on each side of a . . .
staggered wall can improves the R,, rating by 8-10 dB. The attached directly to both sides of the wood studs has an R,, rating of about 33 dB.

gypsum board adds weight to the wall, making it harder for The addition of sound absorbing material in this wall increases its rating by about
sound to vibrate. For the best effect, the second layer should be

, . only 3 dB, because the sound energy is transmitted directly from one layer of
glued to the wall, not screwed on. The screws can provide a . Lo
direct connection from the gypsum to the stud and give a wallboard to the other through the studs. The sound absorbing material in the
flanking path along which vibrations can easily travel (short cavity is of much less benefit than it would be if the layers were decoupled, in

circuiting).

which case most of the sound would be transmitted through the air in the cavity.
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Additionally, the use of resilient (rubber) fastening of linings increases the sound
insulation if rubber clips are used. In practical situations, leaks and structure-
borne connections between the face plates at edges of the partition usually limit
the maximally achievable sound transmission loss at high frequencies to a range
of 40-70 dB (Beranek and Vér, 1992). Acoustic sealing and caulking can help in
reducing eventual leaks. The substitution of the generic components, e.g., shape
of channel can influence sound insulation, as well. For example, a trapezoidal
channel as that shown in Fig. 4.18 leads to better insulation than if the channel
were rectangular. Usually, this relates to the effect of sound distribution via the
channel itself.

Resilient channels used on one or both faces of single rows of stiff (rigid)
studs (wood studs or load-bearing steel studs) also help to overcome peripheral
transmission through header and sole (or bottom) plates. Adding resilient metal
channels to one face of a single row of studs improves sound reduction
considerably, allowing sound-absorbing material in the cavity to be effective, as
evidenced by Table 4.9. In general, with asymmetrical (1x 2) constructions, there
is should be no problem of which side the channels were placed on. Load-bearing
steel studs behave in much the same way as do wood studs for their rigidity, but
light gauge non-load-bearing metal studs and resilient thin steel rails are
sufficiently flexible to reduce sound transmission through the material (Fig.
4.17), and can provide about the same sound reduction as wood-stud walls with
resilient metal channels on one face. Usually, non-load-bearing steel studs are
resilient enough to provide adequate mechanical decoupling between the layers
of a double wall. It is noteworthy to indicate although adding weight will
generally increase the transmission loss of a wall, adding a layer in the wrong
place can reduce the effectiveness of the airspace and thus lower the transmission
loss. For example, adding a layer of gypsum board to the inner face of one row of
studs in the middle of the double stud wall can lower the sound insulation.
Moreover, adding a layer of gypsum board to the inner face of both sets of studs
can also reduce sound insulation.

Metal framing reduces sound transmission significantly better than equally
dimensioned wood, in the same way as wider spacing between framing members,
regardless of material. )

Effect of the air space

In designing a wall, the importance of a large airspace should be remembered
(refer to Table 4.4). The thicker the air space between the boards, the more
flexible it is and thus it transmits less vibration to the other half of the wall,
improving its sound insulation. A thin air space is enough for heavy “massive
structured” double walls, but in the case of light double-framed board walls, the
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Additionally, the use of resilient (rubber) fastening of linings increases the sound
insulation if rubber clips are used. In practical situations, leaks and structure-
borne connections between the face plates at edges of the partition usually limit
the maximally achievable sound transmission loss at high frequencies to a range
of 40-70 dB (Beranek and Vér, 1992). Acoustic sealing and caulking can help in
reducing eventual leaks. The substitution of the generic components, e.g., shape
of channel can influence sound insulation, as well. For example, a trapezoidal
channel as that shown in Fig. 4.18 leads to better insulation than if the channel
were rectangular. Usually, this relates to the effect of sound distribution via the
channel itself.

Resilient channels used on one or both faces of single rows of stiff (rigid)
studs (wood studs or load-bearing steel studs) also help to overcome peripheral
transmission through header and sole (or bottom) plates. Adding resilient metal
channels to one face of a single row of studs improves sound reduction
considerably, allowing sound-absorbing material in the cavity to be effective, as
evidenced by Table 4.9. In general, with asymmetrical (1x 2) constructions, there
is should be no problem of which side the channels were placed on. Load-bearing
steel studs behave in much the same way as do wood studs for their rigidity, but
light gauge non-load-bearing metal studs and resilient thin steel rails are
sufficiently flexible to reduce sound transmission through the material (Fig.
4.17), and can provide about the same sound reduction as wood-stud walls with
resilient metal channels on one face. Usually, non-load-bearing steel studs are
resilient enough to provide adequate mechanical decoupling between the layers
of a double wall. It is noteworthy to indicate although adding weight will
generally increase the transmission loss of a wall, adding a layer in the wrong
place can reduce the effectiveness of the airspace and thus lower the transmission
loss. For example, adding a layer of gypsum board to the inner face of one row of
studs in the middle of the double stud wall can lower the sound insulation.
Moreover, adding a layer of gypsum board to the inner face of both sets of studs
can also reduce sound insulation.

Metal framing reduces sound transmission significantly better than equally
dimensioned wood, in the same way as wider spacing between framing members,
regardless of material.

Effect of the air space

In designing a wall, the importance of a large airspace should be remembered
(refer to Table 4.4). The thicker the air space between the boards, the more
flexible it is and thus it transmits less vibration to the other half of the wall,
improving its sound insulation. A thin air space is enough for heavy “massive
structured” double walls, but in the case of light double-framed board walls, the
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Consequently, rigid mechanical connections are the acoustical equivalent of an
electrical short circuit or a sound (or thermal if heat transmission is considered
too) bridge in an insulated wall and should be avoided. Further related issues are
presented below.

Isolation of wall lining by resilient channels

Fig. 4.18 illustrates common methods to isolate wall linings, e.g. gypsum layers,
from the stud framing. As can be seen in the left-hand figure, the acoustic sealant
used at the ends of the panels is important to reduce the effect of sound leakage.
Without a sealant, a deterioration of sound insulation will appears at low
frequencies; commonly at f> 100 Hz and increases dramatically with increasing
frequency and can reach up to 20 dB at f> 1500 Hz.

Upper wooden stud

!
>-% i 7Smm  Stud frami
Mineral wool ud framing 3 mm
8% ;T e
i -

Gypsum boards v
~ LA 600 mm

& Resilient

channel

Acoustic sealent

Resilient channel

Gypsum board layers

| — Screw to
ol L ¢ .1 attach channel
Acoustic sealent 77 :;"
W%’ 'L 50 mm
L
Bottom
wooden 5““[\““”““ Screws for gypsum boards
sealent (or any lining) onto the side of channel

These must no touch or penetratre framing

Isolating wall linings in a Details of channel set-up
double wall

Fig. 4.18 Acoustic details of isolating wall linings from the framing in double partitions. Gypsum
material naturally has a high bulk density, and therefore its weight gives naturally good sound
reduction at low frequencies. Coupled with soft mineral wool sealed - in plastic bags and fitted to
the rear of the ceiling or wall panels, good sound reduction from room to room is achieved
throughout the frequency range.
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Additionally, the use of resilient (rubber) fastening of linings increases the sound
insulation if rubber clips are used. In practical situations, leaks and structure-
borne connections between the face plates at edges of the partition usually limit
the maximally achievable sound transmission loss at high frequencies to a range
of 40-70 dB (Beranek and Vér, 1992). Acoustic sealing and caulking can help in
reducing eventual leaks. The substitution of the generic components, e.g., shape
of channel can influence sound insulation, as well. For example, a trapezoidal
channel as that shown in Fig. 4.18 leads to better insulation than if the channel
were rectangular, Usually, this relates to the effect of sound distribution via the
channel itself.

Resilient channels used on one or both faces of single rows of stiff (rigid)
studs (wood studs or load-bearing steel studs) also help to overcome peripheral
transmission through header and sole (or bottom) plates. Adding resilient metal
channels to one face of a single row of studs improves sound reduction
considerably, allowing sound-absorbing material in the cavity to be effective, as
evidenced by Table 4.9. In general, with asymmetrical (1x 2) constructions, there
is should be no problem of which side the channels were placed on. Load-bearing
steel studs behave in much the same way as do wood studs for their rigidity, but
light gauge non-load-bearing metal studs and resilient thin steel rails are
sufficiently flexible to reduce sound transmission through the material (Fig.
4.17), and can provide about the same sound reduction as wood-stud walls with
resilient metal channels on one face. Usually, non-load-bearing steel studs are
resilient enough to provide adequate mechanical decoupling between the layers
of a double wall. It is noteworthy to indicate although adding weight will
generally increase the transmission loss of a wall, adding a layer in the wrong
place can reduce the effectiveness of the airspace and thus lower the transmission
loss. For example, adding a layer of gypsum board to the inner face of one row of
studs in the middle of the double stud wall can lower the sound insulation.
Moreover, adding a layer of gypsum board to the inner face of both sets of studs
can also reduce sound insulation.

Metal framing reduces sound transmission significantly better than equally
dimensioned wood, in the same way as wider spacing between framing members,
regardless of material.

Effect of the air space

In designing a wall, the importance of a large airspace should be remembered
(refer to Table 4.4). The thicker the air space between the boards, the more
flexible it is and thus it transmits less vibration to the other half of the wall,
improving its sound insulation. A thin air space is enough for heavy “massive
structured” double walls, but in the case of light double-framed board walls, the
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thickness of the air space must be at least 145 mm in order to fulfill the sound
insulation requirement for walls between apartments. At high frequencies,
standing waves are formed in the air space of a double wall, reducing its sound
insulation. The effect of standing waves is reduced by installing sound-absorbent
material, such as mineral wool or wood fibre insulation material, in the air space,
as discussed before. The air space can be completely filled with light absorbing
material, so for example wood fibre insulation can also be installed by blasting.
The sound insulation of a wall can be improved by 5-6 dB on average by filling
the air space with sound-absorbent material. The softer the absorbing material,
the greater an improvement can be achieved. For example, when using soft
mineral wool, the improvement effect can be 8-10 dB on average.

As indicated earlier, uniform board sheeting should not be installed in the air
space of a double wall because in that case, the double wall becomes a triple
wall, the sound insulation of which is lower than that of a double wall of equal
mass and thickness, as indicated earlier. The impaired sound insulation of a triple
wall is attributed to the generated several vibration subsystems, which can rise
the mass-spring-mass resonance frequency, f, of the wall.

Filling the airspace with gases

By filling the cavity with porous sound-absorbing material, high sound
transmission loss can be obtained. Alternatively, filling the airspace with a gas
(e.g., SFg or CO,) that has about 50% lower speed of sound than air can have the
same effect as the sound-absorbing material (Gosele et al., 1982; Ertel and
Moser, 1984). Using a light gas such as helium, which has about three times
higher speed of sound than air (refer to table 2.4) also improves sound
transmission loss to the same extent as a heavy gas fill. In this case, the
improvement is due to the higher speed of sound in the gas fill, which makes it
easier to push the gas tangentially than to compress it. However, this beneficial
effect can be exploited to some types of partitions such as double windows,
which are, in general, hermetically sealed and light transparent (Bernek ad Vér,
1992). This method can be a solution for the problem with glazing because there
is no in-fill- could use transparent absorber.

Lightweight structures

When lightweight construction and high R,, (or STC) values are desired, double
layer constructions must be used. For lightweight double partitions, it is
practically difficult to produce constructions where the sealing with the
associated attached constructions is adequate for normal montage in field. For lab
test, the process of obtaining perfect sealing is somewhat painstaking, therefore
one should, as a rule, expect to obtain a higher sound insulation value in the lab
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than in field. A typical deviation between 4 dB and 7 dB can thus be considered
between a lab value and what can usually be obtained in practice with good
sealing (e.g., paper machine felt between floor and ceiling strips and joists;
caulking all attachments with adjoining constructions). It is entirely possible to
construct a double partition that possesses so much high transmission loss but
still remains relatively thin and lightweight; an example is shown in Fig. 4.19.

The sound insulation properties and acoustic behaviour of lightweight double
partitions (e.g., wooden studs and gypsum boards) deviate markedly from solid
structures (or massive structures, e.g. brick). For instance, flanking transmissions
caused by lightweight structures often remain minor because gypsum wallboards
have a low sound radiation coefficient, 0. Due to this, sounds caused by impacts
on wall structures are usually not propagated beyond the neighbouring apartment.
Similarly, joints between gypsum board structures differ acoustically from the
rigid joints of solid structures. Joints between wood structures made using
mechanical fasteners are flexible by nature and almost always have a seam that
interrupts the continuity of the structure. Consequently, flexible joints with
cutoffs contribute to reducing the effect of flanking sound transmission.
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Fig. 4.19 Measured transmission loss for a wall composed of triple gypsum board layers (hard) on
both sides and a double stud skeleton with 70 mm studs with mineral wool. R,, is 67 dB.

From the acoustical point of view, the absorption in the cavity is important in
the lightweight double walls whereas the rigid connections have minor influence.
In heavyweight double walls, the rigid connections are most important while the
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absorption in the cavity has minor influence. One can verify these arguments
using the calculation statements mentioned in this Chapter; see also Chapter 5.

4.4.8 Practical guidelines on the sound insulation of double constructions

Based on the previous discussions, the following remarks are highlighted, as
follows.

¢ Lightweight constructions can be very effective but introduce additional effects
that must be appreciated if double layer designs are to be successful. Important
factors, in addition to the masses of the component layers, are the depth of the air
space, the use of sound absorbing materials within the air spaces, and the rigidity
of the mechanical coupling between the layers. The ideal double layer assembly
has no rigid mechanical connection between its two surfaces. However, the
transmission loss of the ideal double leaf is limited mainly because the
mechanical fixings between the two walls, which are essential for structural
support and stability, will create noise bridging transmission paths that limit the
maximum noise insulation obtained. This has the most effect when the noise
insulation through the air cavity is comparatively high, which implies that the
transmission through the fixings becomes significant. This usually occurs at mid
to high frequencies (often above 500 Hz) and is more important for walls that
have high transmission loss. Consequently, the key to good design is that the two
panels must be acoustically and mechanically isolated from each other as much
as possible.

e There is little sound attenuation at the resonant frequency, f;. One should
therefore try to lower it as low as possible, preferably, f, < 100 Hz.

e Absorption materials in the cavity should be used to prevent build up of
reverberant energy and modal resonance.

e A break or separation between materials in the path of sound (the vibration
path) can significantly reduce sound transmission.

e Leaves of double partition should be made of different thicknesses or materials
to separate coincidence dips, especially important for glazing in windows where
damping is low. Using laminated glass, with thin layers of suitable plastic
between layers of glass, can reduce the effect of coincidence as the friction
between the layers gives extra damping.

e A bigger air gap improves the transmission loss; this is useful for glazing.
Typically, R, in this case increases by 3 dB for each doubling of air layer
thickness (acoustic isolation).
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e Although more mass improves transmission loss, the coincidence can be
problem. Consequently, the situation may be studied carefully.

* Separate studding should be used for both leaves for very high performance
(mechanical isolation).

o Staggered studs should be used to reduce the effect of sound bridges.

o Resilient metal channels and ties should be used. Adding resilient metal
channels to one face or both faces of single row of studs improves sound
reduction noticeably, which also make sound-absorbing material in the cavity to
be effective.

* Load-bearing steel studs behave almost as wood studs, but light gauge non-
load-bearing metal studs and resilient thin steel rails are adequately elastic to
reduce sound transmission through the material.

These same principles can be applied to floors and ceilings. A heavy false ceiling
hung on springs can match the performance of a double wall.

e For concrete blocks, it is important to eliminate holes in mortar and blocks.
Similarly it is important that glazing is properly sealed. For all constructions,
good workmanship is the key to good insulation, for example gaps between floor
boards will significant degrade partition performance.

o The case of orthotropic plates should analysed carefully. A typical example of
orthotropic plates would be factory cladding and rib-stiffened panel. These have
different stiffness in both directions, and therefore one obtains multiple
coincidence frequencies; see Sec. 4.7.2. The coincidence region gets extended,
and the isolation is poor unless a large amount of damping is present. In addition,
the modal resonance frequencies are increased in frequency because of the panel
shaping, leading to a decrease in the transmission loss. These are, in general, not
good noise insulators.

* The sound absorbing material in the cavity is of much less benefit than it
would be if the layers were decoupled, in which case most of the sound would be
transmitted through the air in the cavity.

» Flanking needs to be considered, e.g., through lightweight glazing frames, and
independently mounted glazing frames.

* Without a large inter-glazing spacing, triple glazing does not offer significant
improvement in performance over double glazing. In many cases in practice,
double glazing has been designed for thermal rather than acoustic reasons, and
the transmission loss at some frequencies can be poor and even worse than single
glazing and masking sounds at other frequencies reduced.

* Standing wave resonances between the layers of a double layer wall or floor
occur at relatively high frequencies and the sound transmission losses can be
turther reduced by them. The negative effects of most of these resonances can be
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reduced by the addition of sound absorbing material inside the cavities. For
typical wall thicknesses (around 100 mm), the density and thickness of the sound
absorbing material is not a very important factor. Increasing the thickness beyond
about 75 mm has little effect on the R,, ( or STC) rating, although, for floors or
walls that are significantly thicker than normal, it becomes more important to use
thicker layers of glass fibre. The type of glass fibre or mineral wool insulation
normally used for thermal purposes absorbs sound well and is fairly adequate for
use inside double layer walls as a sound absorbing material.

e Floors need to consider structure-borne (footfall) and airborne paths.
Independent joists for ceiling and floor are too expensive, and so a resilient
material may be used to vibration-isolate the two leaves. The resonant frequency,
Jo, is usually very low for a floor, and so not a problem. Mineral wool should be
placed between leaves (providing ventilation is not an issue). Floating floors are
useful to prevent flanking transmission through the building structure, as
discussed in Chapter 5.

¢ All wall partitions must continue to the true ceiling otherwise sound leaks can
be a problem.

e There are, often, several other paths sound can follow apart from the direct
path through the panel, R. These include air conditioning ducts, through ceiling
spaces, around edge fixings, special openings, etc. Consequently, it is better to
have a well-fitting light door than a loose-fitting heavy one. In practice, the
transmission loss of a composite panel is dominated by it's weakest element; see
Sec.4.6.

e The mass or weight of an assembly’s membrane also contributes to sound
control. For example, added sheets of gypsum board absorb more sound, and a
cement block wall absorbs more sound than an empty frame wall.

o Materials with higher density and airflow resistance are better at reducing
sound transmission. Likewise materials with higher density and airflow
resistance are better at reducing sound transmission.

Example 4.6: In the plant room of an industrial building, there is a compressor
which operates at 1500 revolution / minute. The machine yiclds 4 pressure
impulses per each revolution. The neighboring room is used for the personal. The
partition between the two rooms is composed of 13 mm plasterboards (surface
density 10 kg/m”) on both sides, which are connected by 70 mm timbre studs, c/c
600 mm. Why the personal complain about the high noise coming from the
machine room? Make the necessary modifications.
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Solution

The disturbance or excitation frequency from the machine f =1500(4)/60 = 100
Hz. The mass-spring-mass resonant frequency for the double wall is found from
Eq. (4.47a):

1/2
fﬁﬁ ) i+i =101 Hz
2721 0.07010 10

Consequently, the resonant frequency coincides with the disturbance frequency
from the machine, which results in the strong wall vibrations and the subsequent
noise radiation to the neighboring room.

As modification, one can either increase the height of studs (gap depth) or the
density of the plasterboards. For instance, changing d to 140 mm, the resonant
frequency becomes: fy = 72 Hz, and the same result would be obtained by
increasing the mass density, M. Thus, with such modification, f, will not be
within the limits of frequencies of building acoustics, suitable for human hearing
and no longer match with the excitation frequency of the machine.

4.5 External Lining for Sound Insulation

A simple way to increase the airborne sound insulation for a heavy solid single
wall (e.g., fagades) or floor is to clad it with a radiation-reducing layer or so
called separate board layer or external lining. This can be accomplished by a
plasterboard or particle board supported on studs that are fastened (e.g. with
nails) at the original wall with a mineral wall blanket in the cavity, as shown in
Fig. 4.20. The construction is, acoustically, an asymmetrical double wall
(different properties for two leaves). Since the surface density of the radiation-
reducing layer (e.g. plasterboard), M,;, is much lower than the wall’s surface
density My, itself (M, <<M,,), the formula of system’s resonant or eigen
frequency, f; , Eq. (4.47a), may be simplified to:

fo= (4.109)

s1

Below this frequency, the radiation-reducing layer yields insignificant
contribution to the insulation as the total surface density is not effected. Above f;,
the lightweight layer (or leaf) yields an improvement in insulation, AR;, which
increases rapidly with frequency according to:

AR, = 401og[fiJ f >f) (4.110)

0
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An upper limit for insulation improvement is reached when sound transmission
via interconnections becomes dominant. This transmission is frequency-
dependent and is thought to contribute totally to the original wall insulation.
When the radiation-reducing panel is nailed on rigid studs (line connection) with
c/c-distance, b (m), this contribution, AR,, can be calculated as

AR, :1010g(g) (4.111)

(4

where A, is the panel wavelength at coincidence (m), 4, = clf. . Alternatively, if
the panel is fixed point-wise in N points/m? (number of points per unit area of the
wall), the expression of maximum insulation improvement becomes:

3

T
AR, =10lo 4.112
g g[gmi] ( )

Heavy wall Heavy wall
Board layer (lining) Separate board layer
Stud Separate stud

Mineral wool Mineral wool

External lining with fixed studs External lining with free studs

Fig. 4.20 The airborne sound insulation of a simple “massive structured” wall can be improved by

doubling the structure by placing a radiation-reducing layer such as plasterboard whereby studs are
fixed to or detached from the original construction.

Subsequently, the total sound reduction index improvement by additional layers
for walls, AR,,,, is obtained as

AR,,, = ~10log(10 R0 41074k /10) (4.113)

This implies that the minor value of both additional insulations becomes
significant in design.

If the studs that are mounted separately from the wall (Fig. 4.20), there will
be no theoretical upper limit for the insulation improvement, and so the sound
reduction will be calculated according to Eq. (4.110); some results are shown in
Fig. 4.21. As can be seen, the deteriorating effect of studs on the sound insulation

Airborne Sound Insulation 425

is clear, because fixed studs to the renovated wall are sound bridges, which offer
an additional transmission path for sound. When studs are separated from the
existed wall, there will be no mechanical interconnection between the leaf and
the wall, thereby increasing the sound transmission reduction.

Example 4.7: In order to improve the sound insulation for a 15 cm thick concrete
wall, an additional insulation has been performed. This contains of 45 mm timbre
studs, ¢/c 600 mm and 13 mm thick plasterboard (surface density is 10 kg/m?).
The studs have been fixed firmly in the concrete and the space between them is
filled with mineral wool. In order to improve the sound insulation further, a
suggestion to separate the studs from the wall is put under discussion since the
space allows for such arrangement. If the studs are relocated 50 mm from the
concrete wall, how much would be the improvement? The mineral wool and
plasterboards are still in use.

Solution
I. Before carrying out the extra improvement:

From Eq. (4.109), f, = 60/ 0.045(10) =90 Hz
From Eq. (4.110), AR, =40log(f /90) =40log f —78.2

From Example 4.4, the critical frequency of 13 mm plasterboard (gypsum board)
is =2618 Hz.

Thus, 4, =c/ f, =344/2618=0.13 m

From Eq. (4.111), AR, =1010g(0.67/{2(0.13)}) = 8.6 dB.
Accordingly, the total sound improvement, Eq. (4.113) becomes:
AR, (f)=-10log{10™**8/ +107%%} (E.1)

This function is plotted in Fig. 4.21.

II. After carrying out the extra improvement:

The cavity depth will be d = 0.045 m + 0.05 m = 0.095 m.

The resonant frequency for the new installation becomes

fo =60/,[0.095(10) =~ 62 Hz.

When the studs becomes free standing from the wall then AR, = 0. Therefore,
AR, (f)=AR, =40log(f/62) (E.2)
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The difference between the two cases is calculated as: (E.2) — (E.1). The results
are shown in the Fig. 4.21. As can be seen, there will be a great sound reduction
when the studs are not fixed to the concrete wall. Moreover, the resonant
frequency of the new system has been lowered, so it lies outside the interesting
frequency limits of building acoustics, suitable for human hearing.

Renovation in practice

In addition to wooden studwork, doubling of existing massive structure can be
carried out by constructing a separate wallboard with studs on top of the wall or
with mineral wool put in-between by using resilient bars attached to the existing
wall instead of the wooden studwork. In such cases, the improvement of the
sound insulation of the wall is often not enough; due to flanking transmission, the
floor and ceiling of the room will also have to be converted into double
structures. The design of additional insulation is based on the frequencies at
which the insulation must be increased. Especially, for a unit room (e.g. heating,
etc) with low frequency sound the design is crucial due to the noise spectrum
emitted by such a room. As revealed by Eq. (4.109)-Eq. (4.113), the important
parameters that should be taken into account are: (1) the surface density of the
layer and it is bending stiffness, (2) the distance between the wall and the layer
and (3) fixation of the studs in the heavy wall (Fig. 4.20).
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Fig. 4.21 Sound reduction improvement by mounting a radiation-reducing layer where the studs are
either fixed or not fixed to the existed concrete construction. The prediction is based on Example
4.7.
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Additional insulation is specially applicable and effective for heavy or
massive wall. However, for lightweight walls (i.e. wallboard on studs), such a
measure can lead to a deterioration in sound insulation due to the factors that are
discussed previously. Nevertheless, the sound insulation of a double-framed wall
can be improved by adding extra layers of plasterboard to the structure to
increase the mass or by increasing the thickness of the air space. The air space
can be thickened by removing the sheeting from one side of a double-frame wall
before building the new additional wall. If, on the other hand, the sheeting
removed from the existing wall serves as a stabilizing structure, the bracing
capacity of the sheeting can be replaced by diagonal grid siding. The diagonal
siding boards should not be spaced too dense, for example with a spacing c/c of
300 mm (Lahtela, 2005), because the air space in a double wall should not have a
uniform laminar surface interrupting the air cavity that is filled with mineral
wool. Renovation of some old wall structures to improve their sound insulation is
shown in Fig. 4.22.

Gypsum board layer

Diagonal grid siding
Timbre stad

Old structure Old structure OId structure Old structure

1. Heavy massive wall  II. Heavy massive wall II1. Board wall IV. Board wall

Fig. 422 Renovation of some old wall structures to improve their sound insulation. (I) Sound
radiation reducing layer is built on an old heavy massive concrete or brick wall; (II) Sound
radiation reducing layer with resilient bars is built on an old heavy massive concrete or brick wall;
(III) Adding extra plasterboard layers on both sides of an old double framed wall increases the wall
mass wall; (IV) Increasing the thickness of the air cavity of an old double framed wall by adding a
new stud work such that the stabilising sheeting on one side of the double wall is replaced with
diagonal grid sliding.
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Seemingly minor construction details can affect the acoustic performance of a
renovated double wall. For example, when gypsum wallboard is attached to steel
furring or resilient channels, using screws that are too long will result in the
screw contacting the face of e.g., the concrete masonry substrate, which in turn
becomes an efficient path for sound and vibration transmission; see also Fig.
4.18.

4.6 Multiple and Composite Partitions

4.6.1 Multi-leaf partitions

Multi-leaf partitions or so-called multiple walls or lagging structures are those
structures, which are composed of three or more leaves. As with the double
partitions, a substantial increase in the sound insulation will no be achieved
before the frequency exceeds the system’s eigen or resonant frequency, fy; a
symmetric wall is assumed. Below this frequency, the insulation is determined by
the total surface density (mass per unit area). Above the resonance frequency, the
insulation increases very fast with frequency and the more leaves that compose
the wall the faster increase in sound insulation becomes. Therefore, a multiple
wall can be a solution if very high insulation is required and if there is an
available sufficient space. If, on the other hand, the space is limited, a properly
designed double partition yields, in general, as good insulation as a symmetrical
multiple wall. Asymmetrical multiple constructions has been used with some
success in some window constructions.

A general procedure to calculate the transmission loss for multi- leaf (layer)
constructions may be found in Hamada and Tachibana (1985), Au and Byrne
(1987), and Beranek and Vér (1992). This procedure is general in the sense that
the layers can be orthotropic or isotropic, composite or single, filled with an
absorbent or without it (only air) and can also be applied to a double
construction. The method allows for considering the absorption properties of
porous material in the cavity. In addition, the transmission loss is expressed as a
continuous function that covers the frequency range. However, it is assumed that
there are no mechanical connections between layers, and so the structure borne
sound is neglected through the sound bridges. It can be shown that the method
yields reasonable results below the critical frequency of the structure but not at
and above the coincidence frequency of the structure. The method is based on a
network technique so that one starts from the receiver side of the construction
and end with the source side in which analytical and numerical expressions are
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used. Alternatively, the general methods of analysing double constructions, as
presented in this chapter, may be employed to analyse multi-leaf partitions.

4.6.2 Transmission loss of composite walls

A partition between two rooms consists, often, of various components with
different sound reduction indices. The total power transmitted through a
composite wall (elements in parallel, e.g., a window or door in the wall) is the
sum of the power transmitted through each element, since the incident acoustic
intensity is the same for all elements:

u//r :Z“/lr,j = Tu’iu =7’-Slin :IillszSj (4114)
J J

The quantity § = }.5; is the total surface area, and 7; is the sound power
transmission coefficient for each individual element. The overall sound power
transmission coefficient for elements in parallel in a composite wall is obtained
by determining an average transmission coefficient in a manner similar to finding
the average absorption coefficient. Accordingly,

- ZT;S,J = TISI +T2Sz + i
S S +85,+..

(4.115)

It the different components has sound reduction indices R, Rs,..., R, (dB) and
areas S, Sy..., S, (mz), the total or overall sound reduction index (or
transmission 10ss), R, for the composite wall can be obtained by combining Eq.
(4.115) and Eq. (4.114) and observing that the sound reduction index is
expressed by Eq. (1.20). The result becomes:

R,, =10log (4.116)

R, R, R

§,.10 10 4+8,10 © 4+ +5, .10 10

The overall sound reduction index (transmission loss) can be considered as a
special case of the field sound reduction index (refer to Chapter 3) if all sound
transmission occurs via the components under concern since

R,=L-L, —101og(%j (4.117)

where L, and L, are the sound pressure level in the sender-room and receiver
room, respectively, A, is the total absorption surface area in the receiver-room
and § is the partition’s area.
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The calculated composite sound reduction index is only meaningful at a
certain distance (> 0.5-1.0 m) from the wall. Immediately close to the wall, the
sound reduction index for the respective component determines the sound
pressure level of the receiver-room (refer also to Chapter 9). For instance, Eq.
(4.117) can be used to calculate the sound pressure level in the receiving room
from the external pressure level and R may also be taken as a single or (weighted
number).

Generally, openings in a panel effect its sound insulation, because the sound
power transmission coefficient for an opening is unity (all energy is transmitted
through the opening); this effect is illustrated in the following Example 4.8. In
general, if a partition is composed of elements with different sound insulation,
the parts with lower sound insulation can considerably degrade the overall result.
If the difference between insulation is relatively small (7 dB or less) there needs
to be a comparatively large area of the lower insulation element before the
overall sound insulation is significantly affected, as inspected from Eq. (4.116).
A greater difference in sound insulation normally results in a larger reduction of
overall insulation.

Example 4.8: A partition wall consists of a 3.7 m x 30 m concrete wall (R = 50
dB) with a 1.2 m x 1.8 m window (R = 25 dB), a 2.1 m x 1.0 m door (R = 30
dB), and an opening (R = 0), 0.012 m x 1 m under the door. Determine the
overall transmission loss for the wall with the openings included. If the opening
under the door is well-sealed, how much improvement is obtained? The total
absorption of the room on the receiving side of the wall is 29 m sabins.

Solution

One can directly use Eq. (4.116) to calculate the total sound reduction index. For
illustration, the transmission coefficient is calculated. The results where all the
openings are included, are tabulated as follows.

Partition section [Dimension area, S (m?)  |R (dB) 7= 10RO Tx S (m?)

Wall 3.7 x30 =111 50 0.00001 0.00111
Window 1.2x 1.8 =2.16 25 0.00316 0.00683
Door 2.1%1.0 =210 30 0.00100 0.00210
Leak 0.012 x1 =0.012 0 1.00000 0.01200
Total =1153 =0.02204

From Eq. (4.115), it follows that

- 0.02204
115.3

=0.00019
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The transmission loss or sound reduction index for the composite wall is

I i
R=10log| + |=10logl — =372 dB
g[rj g(o.ooow)

Noise reduction, NR, is obtained from Eq. (3.5) and Eq. (4.117):
A, 29

NR=L —-L,=R+10log| —= |=37.2+10log| —— [=31.2dB
S 115.3

If the gap under the door is properly sealed, it follows that:

_ 0010052

=8.72x107 and R =10log
115.3

8.72x107 j =40.6 dB

Accordingly, the new NR after treatment becomes

A
NR=R+1Olog(—2j=4O.6+1010g = =34.6
S 115.3

Improvement = 34.6 — 31.2 =3.4 dB

The NR will, thus, increase 3.4 dB after performing acoustical treatment on the
gap under the door, which is a significant increment. Consequently, if the noise
reduction for a wall is to be effective, any openings must be as small as possible
or completely eliminated, if practical.

4.7 Sound Transmission Loss of Inhomogeneous and Orthotropic Plates

In this section, sound transmission loss of inhomogeneous plates (consist of more
than one material) as well as and orthotropic plates (having different bending
stiffness in each direction) of some building configurations are investigated.

4.7.1 Composite panel of two laminated layers

Panels composed of two or more laminated solid layers or ply are often used as
partitions for enclosures and other acoustic structures. In principle, layers
combined with each other will render the composed panel inhomogeneous, which
requires then a special analytical treatment. Laminating layers increases the
sound insulation due to increases in the resulted mass and sometimes the
damping if the attached layer has higher values of damping factor. Typical
examples are an aluminum plate bonded to a rubber sheet. If the layers are
bonded at the interface with no air space, as shown in Fig. 4.23, then the
composite panel bends about an overall neutral axis due to bending stress
induced by the airborne sound wave. The situation, in general, is treated as a
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single panel. However, the bending stiffness, B, surface density, M,, and loss
factor (or damping coefficient), #, has to be modified with respect to multi-ply
laminated panel.

X
| 13 "
N A ......... ., .= 1 ,._,_,‘m G i ;
) T o Layer 2 h,

Fig. 4.23 A laminated panel composed of two solid plates in bending.

Consider the composite plate shown in Fig. 4.23, let the distance from the
interface between the two layers to the overall neutral axis be, y, positive toward
material 1 side, the location of the neutral axis for the composite panel is found

from the following expression:
__Eh - By (4.118)
2(Ehy + E,h,) '

where E, and E, are Young’s modulus of plate 1 and 2, respectively, and M,; and
M, are their surface densities.

The sound reduction index for Region II, the mass-controlled region, may be
determined from Eq. (4.28) or Eq. (4.30), where surface density, M, for the
layered panel is given by the following expression:

M, =ph +p,h, (4.119)

The critical or wave coincidence frequency for the layered panel may be found
from the general expression of critical frequency:

2 M 12
£, =;—”( st (4.120)

where c is the speed of sound in the air around the panel, and B is the flexural
rigidity or bending stiffness of the panel. For the given composite plate shown in
Fig. 4.23, B is given by the following expression:

VRPN o1, BTV SRR SRS
2y A2 W T 430 2 )T @120
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Note that the algebraic sign for y must be maintained in Eq. (4.121) so that the
quantity y is positive when the overall neutral axis is on the layer 1 side of the
interface.

The sound reduction index (transmission loss) for a layered panel in damping-
controlled Region may be determined from Eq. (4.34) or Eq. (4.36), with the
overall damping coefficient calculated from the following expression (Cremer et
al., 1988; Barron, 2003):

_ (nE by + 1y Eyhy )y +hy)?
E R} {1+301=2y/h)*}+ E,B {1+3(1+2x/h,)*}

n (4.122)

In case that there are more than two layers, then one can take two adjacent layers
and calculate their overall B, M, and # so that the two layers are reduced to one,
which is combined with the remaining layers and so on, using the same
procedure as above.

Example 4.9: An aluminum plate (type 2014) has a thickness of 1.8 mm (0.07
in) and is bonded to a hard rubber sheet having a thickness of 4.6 mm (0.18 in).
The panel dimensions are 450 mm (17.7 in) by 700 mm (27.6 in). The air around
the panel is at 21°C (70°F), for which the density and speed of sound are 1.20
kg/m® (0.075 1b,/ft’) and 343.8 m/s (1128 ft/sec), respectively. Determine the
sound reduction index (transmission loss) for the panel at (a) 500 Hz and (c) 8
kHz. Check also if the rubber layer that is attached to the aluminum sheet is of
advantage with respect to sound attenuation. Consider that the total energy losses
are only due to material damping since the plate is not coupled to other plates
(coupling loss factor = 0) and the radiation damping is often neglected.

Solution

Let the aluminum and rubber plates be layer 1 and 2, respectively. The properties
of the aluminum (subscript 1) and rubber (subscript 2) are selected from Table A
(Appendix) as follows:

p1= 2800 kg/m’, p, = 950 kg/m’
E =652 GPa, E,= 19 GPa
= 0.33, 1= 0.40, 7,= 0.001, 7, = 0.080

The panel E = E/(1- 1), so E\~73.1 GPa and E,~ 2.30 GPa
The surface density for the composite panel is found from Eq. (4.119)

M= 2800(0.0018) + 950(0.0046) = 9.41 kg/m’
The location of the neutral axis for the composite panel is found from Eq. (4.118)
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_73.1(0.0018)? — 2.30(0.0046)>
2{73.1(0.0018) +2.30(0.0046) }

The bending stiffness, B, for the composite panel is found from Eq. (4.121):

1+3(1-2x/h)* =1+3{1-(2(0.00066)/0.0018)}* =1.21

1+3(1+2x/h,)* =1+3{1+(2(0.00066)/0.0046) }* =5.98

B 73.1(10°)(0.0018)*(1.21) . 2.3(10°)(0.0046)°(5.98)
12(1-0.33%) 12(1-0.4%)

The critical or wave-coincidence frequency for the composite panel is found
from Eq. (4.66):

_(343.8)° ( 9.41

=0.00066 m

=181.05 N.m

27 \181.05

112
] =4274 Hz

It the panel were constructed of aluminium only (layer 1), the'critical frequency
would be found from Eq. (4.120):

_(343.8)° 12(2800)
27\ 73.110°)(0.0018)>

£ =7061 Hz

(a) For a frequency of 500 Hz. This frequency is less than the critical frequency,
so the panel behaviour falls in Region II, the mass-controlled region. The
transmission loss may be found from Eq. (4.30) for the composite panel:

R =20log9.41+20log500—-47.3=26.2dB
For a single aluminium ply, the transmission loss reads
R =20log5.04+2010og500-47.3=20.7dB

The addition of the mass of the rubber sheet increases the transmission loss by
about 5.5 dB.

(b) For a frequency of 8 kHz. This frequency is greater than the critical frequency
and so the panel behaviour falls in Region III, the damping-controlled region.
The composite panel damping factor is found from Eq. (4.122):

7= {0.001(73.1)(0.0018) + 0.08(2.3)(0.0046) } (0.0018 + 0.0046)*

=0.02
73.1(0.0018)* (1.21) +2.3(0.0046)* (5.98)

Using Eq. (4.36), the transmission loss at the critical frequency for normal
incidence reads:

R=2010g9.41-1310g4274 +3310g8000+1010g0.02 - 48 = 36.1 dB

For a single layer of aluminium, the transmission loss for the aluminium alone at
8000 Hz is as follows:
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R =2010g5.04—1310g 7061+ 331028000 + 1010g0.001— 48 = 14.8 dB

The addition of the rubber layer increases the transmission loss at 8 kHz by
about 21 dB.

4.7.2 Orthotropic plates

Sound transmission in orthotropic panels differs from that of isotropic panels
because in orthotropic plates, the bending stiffness varies in directions. The
difference in bending stiffness for plane plate may result from the anisotropy of
the plate material such as wood caused by grain orientation or from construction
of the plate such as corrugation, ribs, cuts and so on. Consequently, the speed of
free bending waves is different for these two directions and the orthotropic panels
have two coincidence frequency. Panels may have ribs attached to increase the
stiffness of the panel and to reduce imposed static stress levels for a given
applied load. Note that the increase in bending stiffness caused by corrugations,
ribs, and stiffeners often decreases the transmission loss. If, however, the bending
stiffness of the plate decrease, such if one makes partial-depth saw cuts, the
transmission loss would increase.

Rib-stiffened panel
Let’s consider a typical case of orthotropic plates, the rib-stiffened panel shown
in Fig. 4.24, which has a stiffness that is different in the direction parallel to the
ribs (the stiffest direction) than in the direction perpendicular to the ribs. This
difference in stiffness has an influence on the transmission loss for the panel
(Maidanik, 1962).

—
Y%
-
L —

Fig. 4.24 Dimensions for a rib-stiffened panel. d is c/c distance (spacing) between ribs, and t is the
thickness of the rib.
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The sound reduction index for Region II, the mass-controlled region (f < f,;), may
be determined from Eq. (4.28) or its approximation Eq. (4.30), where the surface
density, M, is expressed as

M = ph{l+(h, [h)(t/d)} (4.123)

where p is the density of the panel. Usually, there are two different wave
coincidences or critical frequencies for an orthotropic plate, such as a rib-
stiffened panel, corresponding to the different stiffness of the panel. The two
critical frequencies are given by expressions similar to Eq. (4.120):

2 (1 12 ) /2
C C
M M, 4.124a, b
Ja 27[[ B, j fea 27‘[( B, ] ( )

where B, and B, are the bending stiffness for the stiffest direction and the
direction perpendicular to this, respectively, which are given by the following
expressions (Ugural, 1999):

B ER’

12{(1- (t/d))+ ¢/ d) /(1 + (h, /1))
where I is the moment of inertia about the neutral axis of the T-section shown
shaded in Fig. 4.24, d is the centre -to- centre (c/c) spacing of the ribs, and E is
the Young’s modulus of the plate: typical E divided by (1—%), where 4 is the
Poisson’s ratio; as in acoustic applications, E is the dynamic modulus of
elasticity; see Example 4.10.

For the intermediate frequency range, f,| < f < f.,, the transmission loss may
be calculated from the following expression (Beranek and Ve'r, 1992):

R=R,(f.,))+10log(1) +30log(f/ f,,) —40log{In(4f / £.,)} +
+10log{272°(f,,/ f.)"?)

The quantity R, (f.;) is the transmission loss for normal incidence at the critical
first frequency (lower critical frequency), f.;, expressed by Eq. (4.35).

For the high-frequency range, f> f;,, the transmission loss may be found from
the following expression:

R=R,(f.,)+10log(m)+30log(f/f.,)—2 4.127)

The lowest eigen frequency for a homogenous single plate is expressed in Eq.
(4.22). However, for an orthotropic plate this frequency would read as

B =El/d, B, (4.125a, b)

(4.126)

L - lsz (4.128)
ad cl
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where a and b denotes plate dimension such that f;, is calculated with respect to a
(the stiffest direction) and f;, to b (direction perpendicular to it).

The radiation factor or efficiency in the frequency range f,, <f < f.» can be
expressed as (Heckl, 1960):

(4.129)

Other orthotropic plates

The above expressions may well be generalised to other typical orthotropic
plates, except for the expressions of M, and B, which can be different according
to the type of plate. For instance, the bending stiffness (Nm) of corrugated plates
reads (Cremer et al., 1988):

B, =B,(s/s"), B, =Eh’*/12 (4.130a, b)

where s is distance between corrugations along surface, s~ is the distance along a
straight line, A is the thickness of the corrugated plate, E is the Young’ modulus
of elasticity of plate: E divided by (1—%). The surface density of thin corrugated
plate reads: ph. In some literature x and y are interchanged for 1 and 2,
respectively.

Example 4.10: An oak wood sheet, 1.31 m (51.2 in) by 2.33 m (91.7 in) with a
thickness of 12.7 mm (0.50 in), has oak wood ribs attached. The dimensions of
the ribs are 23.1 mm (0.91 in) high and 20.3 mm (0.8 in) thick. The ribs are
spaced 90.6 mm (3.6 in) apart on centers and are oriented parallel to the long
dimension of the sheet. Air at 25°C (77°F) and 101.3 kPa (14.7 psia) is on both
sides of the panel for which ¢ = 346.3 m/s and p, = 1.184 kg/m’. Determine the
sound reduction index of the panel for a frequency of 1000 Hz. Compare the
results with the same panel but without ribs. Te damping coefficient, #, is mainly
due to internal material losses.

Solution

Consider the T-section to consist of two rectangular parts 1 and 2 as the
illustration. Let C(x¢, yc) be the centroid of the T section. Let A; be the area and
X; y; the coordinates of the centroid of the i" part. The y coordinate of the
centroid is obtained as

Ye=YAYIYA;
=[(23.1x20.3) x 11.55 + (90.6x12.7) x 29.45] / [(23.1x 20.3) + (90.6x12.7)]
=24.267 mm
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The moment of inertia I, of the T-section about an axis parallel to the x axis
through C would be

I = Y712 + (bih)(ye - y)']
=20.3(23.1)°/12420.3(23.1) (24.267-11.55)> + 90.6(12.7)*/12+
+90.6(12.7) (24.267-29.45)*
=1.431x10° mm*

The bending stiffness of the stiffened panel in the direction parallel to the ribs,
By, is found from Eq. (4.125a) and the properties of oak wood material are found
in Table A (Appendix).

B, =11.0x10%(1.341x10° x10'?)/0.0906(1 - 0.15%) = 1.666x10* Nm.

The bending stiffness in the direction perpendicular to the ribs, B,, is found from
Eq. (4.125b):

11.0x10°(0.0127)°

B,

" 12{(1- (0.0203/0.0906))+ (0.0203/0.0906)/(1 + (0.0231/0.0127))" } 1 —0.15%)
= 2436 Nm

_ 3515 nig.aslp0.15] 3515
. A LA >

[Mlustration of Example 4.10 Calculation of moment of inertia of T-section.

The surface mass or mass per unit surface area for the rib-stiffened panel may be
found using Eq. (4.123):

M =770(0.0127){1+(0.0231/0.0127)(0.0203/0.0906) } = 13.764 kg/m’
The two critical frequencies may be determined from Egs. (4.124a, b)

346.3)2 (13.764 )" 346.3)2 (13.764\"?
fu=s )( = 549Hy; f, = M0 [13T64VT_ sy,
27 16,660 o\ 2436
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For the rib-stiffened panel, the frequency of 1000 Hz falls in the intermediate
region. Subsequently, the transmission loss may be found from Eq. (4.126). The
transmission loss for normal incidence at the lower critical frequency is
calculated from Eq. (4.35):

2
R,(f.)= 1010g[1+[1g%j }: 35.3 dB

The transmission loss for the rib-stiffened panel at 1000 Hz will now read:

R =35.3+1010g(0.008) +3010g(1000/549) — 401og {In(4(1000)/549) } +
+10log{27°(1435/549)"*} =30.2dB

For the panel without the ribs, the surface mass is as follows:

M, = ph=1770(0.0127) =9.78 kg/m’

The critical frequency for the panel without stiffening ribs is determined from the
general expression, Eq. (2.331).

¢

~346.37(12(9.78)(1-0.15%)
2z | 11(10°)0.0127)°

/2
j =1363 Hz

For the oak wood panel without stiffening ribs, the frequency of 1000 Hz falls,
theoretically, in the transmission loss Region II, the mass-controlled region, Eq.
(4.30):

R =2010g9.78 +2010g1000—-47.3=32.5dB

Note that this result is very approximate since the field-incidence mass law is
valid up to 0.5f.. As can be seen, the stiffening of the plate contributes to
deteriorating the transmission loss.

4.7.3 Sandwich plates

Structural members made of two stiff, strong skins separated by a lightweight
core are known as sandwich panels, as shown in Fig. 4.25. The separation of the
skins, which actually carry the load, by a low density core, increases the stiffness
of the panel with little increase in weight producing an efficient structure. In
buildings constructions as well as aircraft/vehicles structures, a honeycomb
sandwich panels in which the core resembles the honeycomb are often used.
Often, honeycomb panels consist of a resin-impregnated paper, plastic or metal
foil core sandwiched between very thin metal or fibre-reinforced plastic
faceplates (skins); refer also to Table 4.10. When the core material in a sandwich
construction has a certain degree of stiffness in bending and extension, energy is
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dissipated in the core by the flexural vibrations of the plate. Sandwich structures
without the second thin panel are also frequent. They exist typically in pairs so
that both absorbing faces point inside the cavity.

The sandwich panel is probably the most difficult wall type to model. The
core material transmits shear forces, like in the case of thick walls. While the
core keeps the skins at equal distance apart from each other thereby increasing
the stiffness, it also bears most of the shear loading. For the pure shear waves

(in the absence of bending forces), the propagation velocity can be written as
(see Eq. (2.134))

I/2
c, = G—h ,G= E. (4.131a, b)
: M 2(1+ )

s
where G is the shear modulus, 4 the total plate thickness, M, the total surface
density (mass per unit area), and E. the elasticity modulus of the core material. In
the shear wave, there is no elongation or shortening of the skins and shearing in
the core material is perpendicular to the propagation direction.

The total surface density of a honeycomb plate, M, is calculate as

M, =M +2M, =p.h +2p,h, (4.132)

Skin (faceplate)

NS \Q \;\\ -* -

Fig. 4.25 Dimensions of sandwich plate (or honeycomb panel). In sandwich plate, bending and
shear waves are generated in the elastic core, along with bending waves in the skin and dilatation
vibrations in the elastic core.

Indices ¢ and f'refer to the core material and the faceplates or skins, respectively;
it here assumed two identical skins, otherwise the surface density of each skin
will be calculated separately.

Combined bending stiffness of a honeycomb plate is determined as (Ver and
Homer, 1971):
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1
B=El=—Eh,(h +h,)? (4.133)

It is assumed here that the core material is incompressible to keep the skins at
equal distance.

Bending waves appear in the core material and the propagation velocity of the
overall cross-section of bending wave in the absence of shear distortion, cp, is
expressed by the general expression, Eq. (2.153) with the stiffness and density
expressed above. The result may be simplified assuming that A, << h., which
results in the following expression:

2 3 1/4
Cp= _a)M (4.134)
2M (1-u*)

Moreover, bending waves appear in each of the skins and for the propagation
velocity, cgs, of these waves, only half of the core material mass, M., is added to
the mass of skins, My, as inspected by Eq. (4.133). Accordingly, the bending
wave velocity for the faceplate becomes:

o

23 Y

G =| L (4.135)
6MA(1_,u )

The relationship between pure bending (in the absence of shear distortion), pure
shear (in the absence of transverse bending force), and transverse waves in a
honeycomb panel may be written as a 6-grade equation (Kurtze and Watters,
1959):

4

c 6 2 4 4 2 24 _

(C—XJ Cpopp TCiChopr —CiChoy —CiCpr =0 (4.136)
B

where cp.; is the effective bending wave velocity. For most practical
constructions, cz >>cgp, and so Eq. (4.136) may be solved as

-3
I I
Cpopr = ['—1—‘—'1———*} (4137)

Cp CptC;

The coincidence (f = f.) occurs when cp . = ¢ (air), which plays an important role
for sound transmission, and cg . accounts for the panel flexure that influences the
transmission loss in the sandwich panel. Inspection of the latter expression
reveals that the value of cp.; approaches the value of cgz near coincidence.
Further, f, lies between the lowest critical frequency that corresponds to pure
bending and the highest critical frequency for the faceplates alone.
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The important parameter for sound transmission is the ratio between bending
wave velocity and sound speed in air, as expressed by Eq. (2.276). Consequently,
the coincidence frequency of the sandwich plate is rewritten as

2
fe= <t (4.138)

2
CB,ejf

This result affect the radiation factor, o, (if plate is considered finite), which
doesn’t decrease quickly towards low frequencies as the case for homogenous
plates. Subsequently, the resonant transmission plays more important role for
sound transmission than for the case of homogenous plates. Table 4.10 offers
material properties for a number of core materials for sandwich constructions.
For f > f., the transmission loss may be approximated as

R=R,+10logn+10log{(f/f.)~1)— AR, —2 (4.139)

where R, is transmission loss for normal incidence, Eq. (4.27), £, is expressed by
Eq. (4.138), and AR, for sandwich plate is between 0 and 3 dB: AR, = 0 dB for
pure bending waves and AR, = 3 dB for pure shear waves.

The effect of dilatation resonance

Honeycomb panels contain cores that are very stiff in compression normal to the
plane of the panel. As such cores are compressible materials (e.g., plastic foams,
Table 4.10) dilatational resonance occurs between the masses of skins due to the
compressional stiffness of the core; the masses oscillate with the core material in
between as a spring. This phenomenon is analogous to the resonant frequency, f;,
of double walls (mass-air-mass), but tends to occur practically at higher
frequencies (Fahy, 1985). This leads to deterioration of sound insulation of
sandwich plates. This is clearly shown in Fig. 4.26. Note that the mass low
represents an upper limit for the practical obtained sound insulation of sandwich
plates and that small changes in the core material parameters can imply drastic
influence on the sound insulation.

Dilation resonance occurs at the frequency where the combined stiffness
impedance of the faceplate and that of the enclosed air equals the mass
impedance of the plate. Dilatation resonance frequency can be calculated as (Ver
and Holmer, 1971):

112
Jair = L 4Ly » B, = L (4.140a, b)
2z h, (2M3f +M . /3) 3(1-2u)

where E, is core material elasticity modulus, and 4 the Poison’s ratio. It is
obvious that 4 has big influence on f,;; a rubber has u = 0.5, which implies that
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fau becomes very high. Obviously, the dilatational resonant frequency depends

only on the type of core material and mass density.

Table 4.10 Material properties for a number of core materials of sandwich constructions. E and G
only indicate stress and shear normal to the panel plane (after Kristensen and Rindel, 1989).

Material p E G
(kg/m?) (x10% N/m?) (x10° N/m?)
Polyurethane foam 40 14 3
Polyurethane foam 100 30 18
Polystyrene foam 20 10 6
Polystyrene foam 160 20
fenol foam 60 50 10
Silicone rubber
Natural rubber 1
Urethane rubber 10
Honeycomb with framework of
Paper 40
Plastic 20
Plastic

Aluminium

Aluminium

Plates of mineral wool

(fibre # layer plane)

Rock wool

Glass wool

Lamina plates of mineral wool
(fibre L layer plane)

Glass wool

Glass wool

Glass wool

Design considerations

The sandwich construction must be designed such that the shear wave (S-wave)
speed remains below the speed of sound in air (¢, <<c¢) as this results in high
critical frequency and low contribution from the resonant transmission at higher
frequencies (no trace coincidence occurs). This implies that the core material
must have low G, as inspected from Eq. (4.131a). In this case, honeycomb panel
will exhibit almost mass-controlled transmission behaviour over the whole
frequency range, as shown in Fig. 4.27. However, in practice, the stiffness, G, is
often large and one would obtain instead ¢, =~ ¢ or possibly ¢, >>c, which result in
a critical frequency that usually falls in the middle of the audio frequency range,
which is not favoured as discussed before. This is why ordinary sandwich panels
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are very poor sound barriers because of their low mass and high bending
stiffness. Fig. 4.27 shows measured results for a sandwich plate. The best results
are obtained when ¢, < c¢. When a stiffer core plate is used, a low value of f, is
obtained thereby yielding lower sound insulation in which the resonant
transmission becomes dominate.

Mass law

200 500 1000 2000 5000

Frequency (Hz)

Fig. 4.26 Measured transmission loss of a sandwich plate consists of 13 mm gypsum boards with a
core of 55 m polyurethane foam, compared with the mass low. The dilatation resonant frequency is
about 730 Hz (after Homb et al., 1983).

Mass law

1000 2000 5000
Frequency (Hz)
Fig. 4.27 Measured sound reduction index of honey comb sandwich panels. == ¢ — e, Low core

shear stiffness: ¢, < ¢, and f. high; eeeee High core shear stiffness, ¢; > ¢, and f, low (after Fahy,
1985).
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A sandwich panel contains three adhesively connected material layers; two
thin panels with one poroelastic layer between them. Adhesive bonding makes
the sandwich panel very stiff compared with a thin panel with the same mass.
This is also the reason for their popularity. In order for the sandwich to function
correctly the adhesive layers between the skins and the core must be able to
transfer the loads, and thereby be as least as strong as the core material. Without
a proper bond, the three entities work as separate beams/plates and the stiffness
is lost. This is why proper core/skin bonding is so critical. According to Moore
and Lyon (1991), asymmetric and symmetric modes of the panel can be
distinguished, both of which can produce separate coincidence effects resulting
in a strong reduction of R. During asymmetric motion, the thickness of the core
material changes during compression and expansion, while during symmetric
motion, the panels are in phase and the thickness of the core is constant. In the
case of asymmetric modes, the core can act as a spring.

The dilatational resonance is a result of core compressibility, which implies
that the compressibility of core material is not desired for the acoustic design of
sandwich plates. It can be located even at middle frequencies when thick rigid
cores are used. Dilation resonance, leads to further deterioration of the sound
transmission loss of sandwich panels. Therefore, the dilatational resonant
frequency may also be checked and one should try to lower it or move it to upper
frequency range, preferably outside the interesting frequency range of building
acoustics.

Sound transmission loss for sandwich panels can be substantially higher than
for homogeneous panels of the same mass per unit area, provided that such plates
favor the propagation of the free shear waves (with frequency-independent
propagation speed) rather than free bending waves for which the propagation
speed increases with increasing frequency. Moreover, the increase in stiffness
results in the coincidence effect occurring at markedly lower frequencies than
that of a thin panel with the same mass (Jones, 1981). Consequently, the best
design is a compromise between structural and acoustic considerations since if
the shear stiffness is made too low to increase sound insulation, the static
stiffness and structural stability of the honeycomb construction may be
unsatisfactory.

4.8 Sound Transmission through a Finite-Size Panel

For most building acoustic applications, where the first resonance frequency of
typical plate-like partitions is well below the frequency range of interest and the
lateral plate dimensions is much greater than the bending wavelength of the
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forced vibration, the expressions that are strictly valid only for infinitely large
panels can be used to predict the sound transmission loss of finite panels.
However, in many industrial applications, the finite size of the panel must be
taken into account. Consider an infinite plate, excited over an arca. When the
airborne sound field in the room excites the bending wave field in the plate inside
the room, this excited field will be strongly correlated to the forcing airborne
field. This bending wave field is called forced. Due to excitation, a bending wave
field will also be generated in the other side of the plate (the receiver room). This
field consists of waves propagating at the phase speed of free bending wave. At
high frequencies, theses waves will emerge from the boundaries of the excited
area towards the unexcited part of the plate, as discussed in Chapter 2. In reality,
no plates are infinite, and when the sound-forced bending waves in finite panels
encounter the edges of the plate, they are reflected and propagate in the plate as
free bending waves. After repeated reflections, mode shapes or eigen vibrations
with eigen frequencies are built up. If the plate is not too large and damping is no
too high, the reflections will give rise to a field where the amplitude does not
vary very much over the surface, a resonant field. The sum of the incident forced
bending wave and the generated free bending wave satisfies the particular plate
edge condition (e.g., zero displacement and angular displacement at a clamped
edge). Consequently, the sound-forced bending waves continuously feed free
bending wave energy into the finite panel and build up a reverberant, free-
bending wave field, which radiates sound into air, called resonant radiation. The
mean-square vibration velocity of this free bending wave field, <v,”> can be
obtained using a power balance for the finite plate. The power introduced into the
finite plate at the edges equals the power lost by the plate owing to the total
damping losses in the plate, which are composed of viscous damping losses in
the plate material (internal losses), energy flow into connected structures
(boundary losses), and sound radiation into air (radiation losses); see Sec. 4.10.
To put these facts in a mathematical form, the total transmitted (or radiated)
sound power, W (watts), is the sum of sound power of forced radiation, W, and
sound power of resonant radiation, W,, radiated by the finite panel:

W=W, +W, =pycS(<¥; >0,+<7]>0) (4.141)

where < 17]3 > is the mean-square vibration velocity of the sound-forced bending
waves (average in space and time), g, is the radiation efficiency of the forced
waves, S is the surface area of the panel, and o is the radiation efficiency of the
free bending waves (resonant radiation); the expressions of ¢ is found in Sec.
2.15.3.

The radiation factor (or efficiency) of the forced bending wave, o, is
generally a function of the incident angle, @ (oblique incidence) as well as plate
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area and can be smaller or larger than unity; see also Sewell (1970) and Timmel
(1991). For typical applications in building acoustics, a random incidence
(diffuse sound field) is assumed to occur in the room. In this case, the radiation
factor, o, is of the forced bending wave may be expressed as

7f2

o, = [o.(@)de (4.142)

0
where (@) is the radiation factor with respect to incident angle ¢, which may
be taken as (Ljunggren, 1991):

+k

i 2 _
o, (9= k I.sm {0.5L(k, ko)z}..-’k.
05Lx (k. —ky) k> —k>
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(4.143)

where k is the wave number in air, ky = k sing, is the trace wavenumber of the
exciting pressure along the plate, L is the excited length of the plate, which may
be taken as L = (25/m)' as the mean projected trace length (mean value of \L?):
Kosten (1960) suggested that L is the mean free path and it reads L = n§ / U,
where S is the area of the excited part of the plate, and U is the perimeter of the
radiating area S, U = 2(/,+l,), where [, and [, are the dimensions of the excited
area of the plate, S. The two expressions of L are equal for square plate and the
result of ¢, using expressions are approximately equal.

For most applications in building acoustics, the radiation efficiency for the
random incidence (diffuse) of sound-forced excitation, o4, may be approximated
as

o, =0.5{0.2+In(kv/S)} (4.144)

where k is the wave number in air (k = 2zf /c). Eq. (4.144) is theoretically valid
for k\/§>l, but it should be for k\/§>1.8, and for 1< k\/§< 1.8, the result
from Eq.(4.144) should be multiplied by factor 2, if the results are to be
approximately comparable with Eq. (4.142) and Eq. (2.143). In addition, Eq.
(4.144) concerns a finite square plate with free moving edge (Sato, 1973).
However, it can be used as an approximation for rectangular plates too. It is
worthwhile to indicate that the corresponding radiation efficiency for oblique-
incidence of sound-forced waves in infinite plate is op(¢) =1/cos¢; this
expression is also for finite plates but it represent one of two expressions from
which the minimum value is taken.

As indicated above, when a panel is mechanically excited, most of the energy
is produced by resonant panel modes irrespective of excitation frequency. If a
panel is acoustically excited by incidence, its vibrational response comprises both
a forced vibrational response at the excitation frequency and a resonant response
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at all relevant natural frequencies which are excited by the interaction of the
forced bending waves with the panel boundaries, as mentioned earlier. Fig. 4.28
shows the typical behaviour of transmission loss of finite plate. The transmission
loss through the plate in the mass region and forward is characterized by being
composed of forced and resonant (reverberant free bending wave) transmission.
The forced transmission is the transmission that caused by the sound-forced
waves that are generated in a plate due to the incidence of airborne sound waves.
The airborne sound waves will excite the eigen vibrations (free bending waves)
that characterize each plates, which in turn radiates sound into air in the receiver
room. Since below the critical frequency f,, the radiation is very low and can be
neglected, the resonant transmission is of lower importance. Above f. (g >1), the
sound radiation is efficient and forced transmission is of lower importance. Note
that since the radiation efficiency is low (¢ << 1) below the critical frequency of
the panel (f << f.), the vibration response of the panel is controlled by the free
bending waves (i.e., <2 >> <vf2>) but the resulted sound radiation is controlled
by the less radiating forced waves, as shown in Fig. 4.28. However, in the
vicinity of the coincidence region both parts of transmission should be taken into
consideration. Note that it is not the incident sound power but the mean-square
incident sound pressure on the source side that is forcing the panel to vibrate.
Consequently, the sound transmission loss of a finite partition may be defined as
(Rindel, 1975; Sato, 1973):

~2
R=10log LL3 | = 10log <PL>5 (4.145)
E, A 4pocW,

where E, is the energy in the source room, Eq. (2.274b): E, =< p2 >V/p,c?,
< p{ > is the average square sound pressure in time and space over the whole
source room, FE, is the energy in the receiver room, found by combining Eq.
(2.279), Eq. (2.274a), and Eq. (2.255): E, = 4W,V/cA, S is the area of the panel
(one side), A is the total absorption in the receiver room, and W, is the radiated
sound power from the receiver side of the panel (transmitted sound power) owing
to the velocity of the plate, Eq. (2.255).

4.8.1 Forced transmission

The wall impedance, Z,, is the difference in sound pressure across the plate
divided by the velocity of the plate. Consequently, from the wall impedance the
vibration velocity, vy, of the forced-sound waves in a plate may be obtained by
knowing the sound pressure, p;, in the source room (in front of the partition) as
(Cremer et al., 1988):

Airborne Sound Insulation

(4.146)

Damping-controlled region

Stifness- Mass-controlled region Uiper
contr?lled stifness Thick plate
region region

o wld bl

-
*

* Upper limit

Itr‘.lf’7
R

T

Sound reduction index (dB)

Frequency (Hz)

Fig. 4.28 Typical transmission loss for a massive homogenous finite plate is divided into forced and
resonant parts, which is to be added logarithmically. The terms R, and R, denote the forced and
resonant transmission losses, respectively. The dotted line refers to the secondary importance for
the total sound reduction index of the plate. The frequency f; is the limit between thin and thick
plate.

Substituting Eq. (4.146) into Eq. (4.145) and knowing from Eq. (4.141) that the
radiated or transmitted power for forced transmission is: W, = pcS <V 2f >0y
(index 2 refers to the receiver side of plate) will lead to general expression for
forced transmission loss expression, Ry

<pt>S

z
R, =10lo =20log|-——*—{~10log(20; 4.147)
! g( 4pocWy J %2 (20 (

oC

The finite wall impedance may be expressed as (Kristensen and Rindel, 1989):

2 2
Z,=joM, 1—[%] 1—(?—} oM, (fi<<[f) ~ (4.148)

c

where f,; is the lowest eigen frequency, Eq. (4.22), and 7 is the total loss factor.
One may simplify the expressions of transmission loss with respect to each
region by approximating the physical situation of typical building constructions
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(n << 1). By knowing that the forced response at f,, < f < f, is controlled
mainly by the mass, the wall impedance may be approximated as

Z,, = joM, (4.149)
Substituting Eq. (4.149) into Eq. (4.147) would result in
R, =R, —10log(20,) (f;, <f<f) (4.150)

The quantity Ry is the approximated sound reduction index for normal-incidence
sound field or mass law (Ry= R,): Ry= 20 log (7 f M,/pyc). In practice, the most
important part of sound reduction index for the forced part is Eq. (4.150). Eq.
(4.150) implies that the sound transmission loss of finite panels can be larger
than the normal-incidence mass law if the size of the panel is small and at low
frequency.

4.8.2 Resonant transmission

As the plate is considered finite, the free bending waves radiated from the plate
boundaries will cause a reverberant field in the sending room. This case has been
analysed in Sec. 2.13.5 and Eq. (2.286) expresses the resonant transmission loss.
Eq. (2.286) can also be obtained by knowing that the relation between the
velocity of the reverberant field (eigen vibrations) is expressed by Eq. (2.278),
which may be rewritten as

=
<72 5= P> T
(oM )" 2nf
The resonant radiated sound power is given in Eq. (4.141) as: W,, =<¥? > pcSo .

Consequently, substituting Eq. (4.151) into Eq. (4.145) leads to the resonant
sound transmission loss:

(4.151)

<[7,2>S]

R, =10log
4pCW2r ;

2
R, —IOIOg[ﬂszf"J (4.152)

where o is the radiation factor for the eigen vibrations (or free bending waves)
(Sec. 2.15.3). Eq. (4.152) is approximately equal Eq. (4.36) for infinite plates
provided that o=1 in Eq. (4.152).

As discussed in Sec. 4.2.4, in many cases in practices, the walls that separate
the two apartments are load-bearing (e.g., concrete) while the internal walls in
the apartments are made of lightweight materials (plasterboard walls) that are not
load-bearing. This implies the excited part of the plate, S, becomes less than the
area of the whole plate S,,,. In this case, the loss of vibration energy in the whole
plate, S, which extends vertically or horizontally and is attached to lightweight
partitions on both sides, should be taken into account. Accordingly,
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R =10log) <P 25 |_ g _1010g) ZZe | 10100 5= (4.153)
4pCW2r 27# Slol

When § = S,,, Eq. (4.153) reduces to Eq. (4.152). Eq. (4.153) indicates that the
resonant transmission depends directly on the loss factor #, which determines
how strong the eigen vibrations (modes) are excited.

For many building constructions, especially thin plates, the resonant
transmission is often meaningless for f < f. but it dominates for f > f, in which o
>1.

Consideration of thick plate
For thin plate, the bending wave velocity is related to f. by:

cy=cyf/f. (4.154)

At coincidence, f = f,, and cz= c¢. Eq. (4.154) is correct within 10% when i >45/6
(the condition of thin plates) where A, is the wavelength of the bending waves
and 4 is the panel thickness.

The frequency f; at which the thin plate becomes thick (Fig. 4.28) may be
derived by setting A, =6k (the limit between thin and thick plate) and f = f; in
Eq. (4.154), the result becomes:

1(cY
fi= ; (6hj (4.155)
where ¢ is sound speed in air. Considers different construction materials of
thickness 200 mm: for concrete, f, = 10f., for steel f; = 22f,, for brick f; = 7f. and
lightweight concrete, f; =~ 2.5f.. This means that the sound transmission at higher
frequencies through thick plates made of brick and lightweight concrete cannot
occur as pure bending waves but as a combination of pure bending waves and
other wave types such as shear waves, as discussed in Chapter 2. The
transmission of sound bending waves in thick plates at high frequencies occurs
slower than that given by Eq. (4.153). Subsequently, the effective critical
frequency, £.", of thick plates becomes quite higher than f. for f > f. The
corrected f, for thick plate may be expressed using Eq. (4.155) and a correction
factor (Cremer et al., 1988) as

) , : )2 2 12
fe=1.]735 2 + (7.35 2 ] +1 = f. E-’_[(E) +1] (4.156)

For instance, the resonant transmission loss, Eq. (4.153), may be modified to
include the case of thick plate (higher frequencies, f > f;) as
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2 *
R =R, 4010{%} - IOIOg(SiJ (4.157)

tot

For f<<f, f. ~f.and it would be no need for correction.

4.8.3 Total sound transmission loss

The total transmission loss of plate is described as the logarithmic addition of
forced and resonant transmission as

R /10

Rlelog( }z—lOlog(lO_ +107%/10) (4.158)

oy TWo,
where W, and W, are the incident sound power on the panel and the transmitted
one, respectively. The expression for forced transmission, Ry is obtained from
Eq. (4.147) whilst the general expression for resonant transmission, R,, is read
from Eq. (4.157). The general expression for f|;<<f, becomes:

20, wolf! S
212 e >t o
= /O Y=/ +n,  20f S,
where #,, is the equivalent loss factor for the 1/3 octave at resonance, which
reads: (> + 0.1%)", and f.[ is the critical frequency corrected for thick plate.

The solution may be divided according to the frequency, and the following
expressions are obtained for most typical applications:

R=R, —1010g(20'(,)+2010g{1—(f/fc)2} (fu<sr<ro (4.160)

R=R, —IOIOg{

] (4.159)

20 ) 172 2
=R, —-101 dy Fe = 5-0. =
R=R,-10 Og{ 7]3,, + S, [(279‘6/c) 1.(0.5-0 15(lx/l),))] ] (f=r1)

(4.161)
R=R, +1010g(f/f:) +10logn +10log(1—(f/f.))— AR, —10logS/S,, =2
(f>fsf>f") (4.162)
The correction AR, is for thick plate, which reads according to Eq. (4.169) as
AR, :IOIOg[(f/SfS)+\/-(f/5fS)2+1:| (4.163)

where /. is the wavelength at coincidence, A. = c/f., I, and [, (I, < ) are the
dimensions of the plate. For f < £.", AR, =~ 0, with respect to Eq. (4.162). The
sound radiation factor due to free bending waves, o, may be calculated from Eq.
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(2.339)-Eq. (2.344). Further, the radiation efficiency at f = f. is obtained from Eq.
(2.343b).

Limitations

The previous expressions work well for constructions that have high f., much
greater than fi;. When f;, approaches or becomes fairly less than f., the results
will not be valid as in the case of massive constructions with relatively large
thickness. For example, a concrete plate with area 4 m’, thickness 0.2 m, will
have f, = 100 Hz and f),= 145 Hz. In this case, the previous derived expressions
of transmission loss of finite plate will not yield valid results. One may in this
case either use the expressions of infinite plate if the area of plate is not too small
in size, or use the model reviewed in Sec. 4.8.4. At any rate, transmission loss of
massive constructions (e.g., steel and concrete) with relatively small thickness
can still be predicted using the previous expressions provided that fii<<f..
Unfortunately, there is no simplified and comprehensive model for finite plates.
Apart from its limitations, the advantage of the previous model is that it is simple
to calculate and it covers the whole frequency range under interest.

Discussion

Inspection of Eq. (4.160)-Eq. (4.163) indicate that the resonant transmission
becomes dominant for /> f, while the forced one is dominant for f < f.. However,
at coincidence region, the contribution of both parts can be important. Moreover,
the effect of damping and the radiation efficiency of free bending waves (eigen
vibrations) in the mass-controlled region are of secondary importance.
Subsequently, the damping doesn’t control the forced response of the plate at
least for typical building constructions in which the damping factor is usually
very small (# < 0.1). However, the resonance response of the plate is controlled
by the damping, as indicated by Eq. (4.162). Moreover, the damping is also of
secondary importance for the stiffness-controlled region. For many cases in
practice, the low stiffness region whereby the plate vibrates as a stiff membrane
lies typically below 10-50 Hz and as such it is not within the frequency region of
building acoustics.

In general, the expressions of transmission loss of finite plates are only
important when the size of plate becomes small, which is not commonly
encountered in building acoustic application, with the exception of small
windows or similar, as discussed later on.
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4.8.4 Literature review

A complete analytical model for predicting the sound reduction index of a single
plate has been developed by Kernen and Hassan (2005). The analytical model is
valid for a wide frequency range, both below, above and at the critical frequency.
Special interest is paid to the area dependency of the sound reduction index. In
the model, the expressions for forced and resonant sound transmission read:

Motk L2 4 ilkot, )L/2|2
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where k is the wave number in air, ky = k siné, is the trace wavenumber of the
exciting pressure along the plate, L is the waves mean free path, L = zS / U,
where S is the area of the excited part of the plate, and U is the perimeter of the
radiating area of the plate, U = 2(/,+1,), where [, and [, (I, < /,) are the dimensions
of the excited part of the plate (S= [,+]), @ is the angle of incidence, y is the
angle between the direction of free waves and boundary normal, <cos(y)> is the
mean value of cos(y), which reads as

(cosyr) :% f [k, sing/k, )2 o (4.166)

where ¢ is the angle of forcing waves. The forced radiation factor, o, is
imbedded in Eq. (4.164). The total transmission loss is obtained using Eq.
(4.158).

The integration range in the latter two expressions is from 0 to #/2 for diffuse
field. However, in practice, the integration may be limited to 78° instead of 90°
(Cremer et al., 1988) to reduce the deviation between theoretical and laboratory
measurements, as discussed later on.
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Other models

Another models of finite plates may be found in EN 12354-1(2000), Josse and
Lamure (1964), Ljunggren (1991), and Swell (1970). The last two models have
problems in the coincidence region. The EN model is basically the model of
Josse and Lamure with small modifications.

4.8.5 Dependence of sound transmission loss on panel area

Fig. 4.29 shows the transmission loss calculated using expression for finite and
infinite plate expressions. As can be seen, the simplified model described by Eq.
(4.159)-Eq. (4.163) yields good agreement with measurements and with the more
detailed model, Eq. (4.164)-Eq. (4.166). The predicted sound transmission loss of
finite panel is little higher than the predicted transmission loss of infinite panels
for frequencies up to (1/4) f. and then the differences become smaller especially
near f.. At f = f,, the difference between two cases is about 10 dB. This is quite
high difference between two cases, which should be considered by the designer.
Although expressions of finite plate yield better agreement than the expressions
of infinite plates, nevertheless, approximating the sound transmission in finite
plate using the model of infinite plates has given reasonable results.

The area dependency of the transmission loss may be further investigated
with the help of Fig. 4.30. As can be seen, when the plate area becomes small,
the sound reduction index increases. The random-incidence sound (diffuse sound
field in the source room assuming waves incident from 0 to 90°) transmission
loss for f <<f, of partitions of approximately 4 m’ surface area, which are
typically used in laboratory measurements, yield predicted values that are about 5
dB below the normal-incidence mass law. Consequently, the field-incidence
mass law defined in Eq. (4.28) for partitions of this size is theoretically justified.
The random-incidence transmission loss of a finite panel for f << f. is obtained
from Eq. (4.150) where the radiation efficiency of random incidence sound-
forced excitation is given by Eq. (4.142) or the approximate expression, Eq.
(4.144). The results of Fig. 4.29 and Fig. 4.30 demonstrates that for most
building acoustics applications, it is sufficient to use infinite models alone to
predict the sound transmission loss without the resort to finite models as most
building panels are relatively large in size; see also Fig. 4.29.

Inspection of Eq. (4.159)-Eq. (4.163) shows that there is a strong area
dependency of the resonant and forced transmission for low frequencies; for
frequencies at and below f,, the transmission loss increases with decreasing plate
area for both forced and resonant transmission; seec also Fig. 4.30. However,
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above the critical frequency, only the resonant part of the transmission is affected
by the area size, and the transmission loss increases with decreasing area, too.

Transmission loss, R (dB)

O Y TN S Y I 1 |

500 1000

Frequency (Hz)

Fig. 4.29 The sound reduction index of a 16 mm, 4.4 m® chipboard. Young’s modulus is E =
1.5 GPa and p = 626 kg/m3, the loss factors = 4%, (eee), Measured results; ( ), Calculated
according to Eq. (4.164)-Eq. (4.166); (seeeee), Calculated according Eq. (4.159)-Eq. (4.163);
(== == =), Calculated according to Eq.(4.30) and Eq.(4.34) for infinite plates.

Frequency (Hz)

Fig. 4.30 Random-incidence sound transmission loss of 25 kg/m® panels as a function of frequency
with panel surface area S as a parameter, mass-controlled low-frequency region (f <<f.); computed

according to Eq. (4.150) and Eq. (4.144). Ry is the approximation of R, the sound reduction index
for normal incidence.
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Further, the loss factor also influences the transmission loss of finite plate; for
the forced part of transmission; an increase of the loss factor will increase the
transmission loss at and above the critical frequency. However, for the resonant
part of the transmission, an increase of the loss factor will increase the sound
reduction index at all frequencies. It should be pointed out that the sound
transmission loss formulas of finite plates as derived above are only valid in the
frequency region well above the first bending-wave resonance of the panel (f1).

4.9 Transmission of Sound through Infinite Plate

In this section, the case of oblique incidence and diffuse sound field through the
plate are discussed, based on the transmission coefficient. For the theory, it is
assumed that the panels are of constant thickness and the panel material is
homogeneous and isotropic. Furthermore, the panels are assumed to be thin i.e.,
the bending wavelength of the forced vibration is at least six times the panel
thickness and of infinite extent; i.e., the lateral dimensions must be much greater
than the bending wavelength of the forced vibration

4.9.1 Transmission loss of oblique incidence sound waves

Solids can transmit shear forces so that in addition to longitudinal compression
waves, shear waves and bending waves can be transmitted. When a plane sound
waves is incident at oblique angle to the normal of the plate, ¢, (see e.g., Fig.
2.45) on the plate that is laterally infinite, the solution may be formulated by
considering that sound excite both longitudinal (P-waves) and shear waves (S-
waves) in the plate material, similar to the case of a plates or half space excited
by an indenter or disk. The two wave type travel between the two faces of the
plate in a similar manner as the normally incident wave, except that the
compressional and shear waves run at oblique incidence. Subsequently, it is
expected that the transmission loss must be a function of ¢. The oblique
transmission loss (sound reduction index) for thin infinite plates can be written as
(Cremer, 1971):

2

2
M
R(g) =10log—— ~ 1010g| 1+ |-/ M5 605 1—(i] sin’ @ (4.167)
T(¢) pOC fc
where 7 is the sound (power) transmission coefficient, as discussed later on. Eq.
(4.167) is valid for homogeneous and inhomogeneous, isotropic plates, but plates
must be thin compared with shear wavelength. It indicates that when ¢ = 0
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(normal incidence), then Eq. (4.167) is reduced to Eq. (4.27), the classical mass
law. Moreover, when f = f,/sin’¢ (the coincidence frequency), trace coincidence
between incident sound waves and free bending waves in the plate occurs and
would result in complete transmission if the plate has no internal damping.
Consequently, one may introduce internal damping, #, of the plate by making the
Young modulus as complex, according to Eq. (2.194). Subsequently, the
complex critical frequency, f,’, may now be expressed as

fl= fc(l— J %j (4.168)

Accordingly, Eq. (4.167) may be rewritten as

-

R(¢) =10log 1+|”fMSC°S"’ 1—{ — ] sin' @ (4.169)

Eq. (4.169) indicates that near f = f./sin°¢, the curve of sound transmission loss
will be minimum (the trace-matching dip), which is controlled by the damping;
see Fig. 4.31. Eq. (4.167) and Eq. (4.169) indicate that zero transmission loss can
be obtained at grazing incidence (@ = 90°) and when f = 0. At coincidence, when
trace matching occurs, i.e., f = f,/sin’¢, then Eq. (4.167) becomes zero, while
with damping in plate, the transmission loss, Eq. (4.169) will exhibit a minimum
value.

For infinite thick plate, the sound transmission loss of plate may be written as
(Cremer, 1971):

2

2 CosQ (4.170)

R(@) =10log——=10log| 1+
(@) 2ppc

where Z; is the separation impedance, defined as: (p; — p,..)/v,, Where p; is the
complex amplitude of the sound pressure at the source-side face of the plate (the
sum of incident and reflected pressure), p,.. is the complex amplitude of sound
pressure on the receiver-side face of the plate, and v, is the complex amplitude of
normal vibration velocity of the receiver side face of the plate. For single panels,
it is assumed that both faces of the plate vibrate in phase with the same velocity.
The separation impedance of thick isotropic plate (same B in all directions) may
be expressed as (Sharp, 1973):
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where pis the panel density, G the shear modulus, B is the bending stiffness, # is
the thickness of panel, and c is the speed of sound in air. Eq. (4.170) indicates
complete transmission occurs at the trace coincidence between incident sound
wave and the free shear waves in the plate, and a plate can either be
predominately controlled by shear or by bending. Note that Eq. (4.170) is general
in the sense that it comprises thick or thin plates. In thin plates, the resistance to
bending in much lower than the resistance to shear, and that k/h << 1, where
k=w/c, is the shear wavenumber, where c; is obtained from Eq. (4.131). This
means that, in this case, the condition of thin plates is that the plate is thin
compared to shear wavelength. Consequently, for thin plates, Eq. (4.170) in
combination with Eq. (4.171) reduces to Eq. (4.167).

4.9.2 Transmission of random-incidence (diffuse) sound through infinite plate

A plane wave incident on the plate at one angle is not a practical problem. The
sound field in the room is better modeled as diffuse sound field in which plane
sound waves have same average intensity and travel with equal probability in all
directions; these waves are uncorrelated and have same intensity. A region of
unit area on the plate will be exposed at any instance to incident waves from all
areas on a hemisphere (half of a sphere), whose centre is the area of the plate.
The sound reduction index (or sound transmission loss) of the plate is defined in
terms of the sound (power) transmission coefficient, z, as

R=-10log(7) (4.172)

In general, the sound transmission coefficient is a function of both the angle of
incidence of the sound field and the frequency. The angle of incidence, ¢, is
measured from the normal to the plane of the panel as illustrated in Fig. 2.45,
which indicates that the incident sound field is composed of waves strikes the
plate at different angles and frequencies. To simplify the situation, it is necessary
to average both the incident and the transmitted intensities over both frequency
and angle of incidence. At a fixed frequency, the incident intensity, I;(¢),
establishes both the average incident intensity, 7, (subscript n denotes the normal
to the panel), and the average transmitted intensity, 7, (subscript ¢ denotes
transmitted). Subsequently, an average transmission coefficient, 7 , is defined as
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T=1/I, (4.173)

The incident sound intensity on the unit area of the plate from any particular
angle equals to the intensity of the plane wave at angle ¢ times the cosine of the
angle of incidence. The random-incidence sound reduction index (Rinaom) iS
defined as

R =-10log(7) (4.174)

random

The average incident intensity (W/m®) and the average transmitted intensity are
defined, respectively, as

I(p)= jr(qp)]m (p)cospdQ and I,(p)= J.I,.” (p)cosp dQ (4.175a, b)
Q Q

The integration is taken over a hemisphere of solid angle, Q, where

dQ=sinpdpdf, where 0<@<27x and 0<@p<2rx.

For a diffuse incident sound field, /(¢) is independent of direction and is the
same for all plane waves (I(¢) = p’/4pyc) and 7is independent of the polar angle,
6. Subsequently, the expression for the average sound transmission coefficient is
obtained by combining Eq. (4.175) and Eq. (4.173):

Prim
J.z'((p)cos psinpdg

=_ 0
T=— (4.176)

Icosqpsin(pdq)

0

The angle @, is the limiting angle of incidence of the sound field, which is
taken as an empirical limit for the integration. If the sound field is truly diffuse
(random incidence), then @;,= 7/2 radians or 90°. The sound transmission
coefficient 7(¢) may be obtained from the expression for the thin and thick plates,
as discussed above.

At low frequencies (f << f; ), the random-incidence sound transmission loss of
a thin plate is found by combining Eq. (4.176), Eq. (4.174) and Eq. (4.169) with
@im= 90°. The result may be approximated as (see Sec. 4.2.1)

R, = R, —1010g(0.2303R, ) 4.177)

random

where R, is transmission loss at normal wave incidence as expressed in Eq.
(4.27); Riundom 18 commonly referred to as the random-incidence mass law. The
approximation of Eq. (4.177) may be compared with direct calculation of Eq.
(4.176) as shown in Fig. 4.32. As can be seen, Eq. (4.177) yields good
approximation for f < 0.5f.. Further, it can be shown that this approximation is
valid for R > 15 dB; for R < 15 dB, a difference up to 3 dB should be expected
between the approximate expression and the exact one, Eq. (4.176).
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In practice and based on laboratory measurements of the sound transmission
loss for a wide range of construction, it appears that an empirical value of ¢, is
in the range of 78° to 85° (Cremer et al., 1942); however, @;,= 78" is commonly
used in practice. Subsequently, Eq. (4.176) must be solved by numerical
integration in combination with Eq. (4.169) and Eq. (4.174) to obtain the field-
incidence sound transmission for thin isotropic plates, R 4. The solution may be
simplified at low frequencies (f << f. ) and the result becomes:

ézllu[’””-*]_ (4.178)
Tz Po€

Subsequently the sound transmission loss is obtained using Eq. (4.172) as
Rgg =10log(1/7) =R, -5 (4.179)

The latter expression is commonly referred to as the field-incidence mass law and
the approximation is valid for R, =15 dB. The approximation of Eq. (4.179) is
compared with direct calculation of Eq. (4.176) as shown in Fig. 4.32. As can be
seen, Eq. (4.179) yields good approximation for f < 0.5f.

4.9.3 Discussion

Fig. 4.31 shows the curve of transmission loss for a steel sheet at different angle
of incidence, according to Eq. (4.169); the random field-incidence transmission
loss is obtained from Eq. (4.176) and Eq. (4.174), with @;,,= 78°. As can be seen,
the sound transmission loss increases as angle of incidence, ¢, decreases
(because of the cos¢ term) and that at each ¢ there a coincidence frequency
defined by Eq. (4.33). As the incidence angle approaches grazing incidence
(i.e., @ = 90°), the transmission loss approaches zero at f.. Fig. 4.32 shows the
transmission loss calculated using approximate and exact expressions, which
indicates that the agreement is good up to f < 0.5f.. For example, when, R,= 40
dB, then R,yom= 30.4 dB and Rge= 35 dB. It is interesting to see that the
random-incidence transmission loss becomes equal to the random field-incidence
transmission loss for frequencies above the critical frequency.
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Fig. 4.31 Calculated transmission loss versus frequency of versus frequency of 5 mm (3/16 in)
thick infinite steel plate: # = 0.5%, u= 0.3, E = 200 GPa, p = 7700 kg/m® for various angles of
incidence.
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Fig. 4.32 Calculated transmission loss versus frequency of 5 mm (3/16 in) thick infinite steel plate:
n=0.5%, = 0.3, E = 200 GPa, p =7700 kg/m®. Field incidence mass law, Ry, assumes a sound
field that allows all angles of incidence up to 78° from normal and is calculated using Eq. (4.176)
and Eq. (4.174), while the approximate Rpeq (denoted by =) is calculated from Eq. (4.179).The
random-incidence sound transmission 10ss, Rqom, 18 calculated using Eq. (4.176) and Eq. (4.174)
with @y, = 90° while the approximate R, ,om is calculated from Eq. (4.177). The approximations
are valid up to < 0.5f..
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4.10 The Loss Factor in Practice and Theory

The calculation procedure of sound insulation of partitions requires knowing the
loss or damping factor, # either experimentally or theoretically. To measure 7, it
is used small mechanical transducers called accelerometers, which are attached to
the vibrating structure, as shown in Fig. 4.33. The accelerometer is connected to
a preamplifier which can contain networks allowing the measurement of
vibration displacement, velocity, and acceleration. The output signal is analyzed
by the same type of instrumentation as used for sound measurements e.g., a
frequency analysis of the vibration signal. The loss factor, 7, is determined from
the mechanical reverberation time of a partition which is excited by a shaker
driven by white noise in 1/3 octave bands. When the partition has reached a
steady level of vibration, the shaker will immediately be stopped. The
reverberation time for each 1/3 octave band is determined from the decay curves
recorded by an accelerometer, and # is calculated from the general expression,
Eq. (4.181).

Vibration | Pow‘er
exciter | amplifier

Pre- Acoustic :
rm"p]mﬂ analyser Printer

Acceler-
ometer

Fig. 4.33 Illustration of measuring the loss factor of a partition.

In theory, the eigen vibrations (free modes) that are not fed by energy, will
diminish out. At a given point (x, y) of the plate, the damped eigen vibration
amplitude, &, can be written as

E=£ e cosnf,, 1) (4.180)
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where fo is the amplitude at time ¢ = 0, f,, is the resonant frequencies as read
from Eq. (4.22), and ¢ is the damping coefficient, which is equal to logarithmic
decrement divided by the period time; see Chapter 11 for more details on
damping factors. The total loss factor # is related to the damping coefficient &,
which in turn is related to the reverberation time 7 as (see also Sec. 2.12.2):

7= 6 _3Inl0 _ 22
n AT T
where fis the centre frequency of the 1/3 octave band and 7T the mechanical

reverberation time of the partition. Further, to calculate the energy loss of
vibrations in plate, #, the following expression is used:

W, e W, (4.182)
OE,,., 27M.S<7v*>
where W, is the radiated power (energy per time unit) and E,,., is the total
energy of vibrations, which can be expressed by the square RMS velocity
averaged over plate area times the plate mass, M,S; refer to Chapter 11.

As discussed before, the damping of structures, in general, is due to either
transmission to other parts of the structure or radiation to air, or as conversion to
heat (material damping). When measuring isolated samples such as plates in
laboratory, the loss factor is only the radiation loss and material (or internal)
damping loss, #;. If the radiation loss to air is small, the only losses are due to
material losses, as given Table A (Appendix). However, in buildings the losses
due to transmission to other structure parts (coupling losses) are important and
the internal loss factor #;, is not practically enough to describe the total loss
factor, », in buildings since the energy loss at edges (boundary losses) or
coupling loss factor, #,, can also increase the final value of #. There is also the
energy loss due to radiation from plate to air, #,. Consequently, the loss factor
that is measured and calculated by Eq. (4.181) is the total loss factor, which is
can be written as

(4.181)

77:

n=mn,+mn,+1, (4.183)

Additional loss factor, #,, may also be added to the right-hand side of Eq.
(4.183), where 7, is the loss factor due to special case of energy transmission
from one floor to another through the structure; if no data are available then N =
0. The loss factor of sound radiation to surrounding air #, is expressed in Eq.
(2.247a, b). Loss factor due to internal losses, #;, can be estimated to 0.4% for
most building materials (Cremer et al., 1988). It is suggested that the sum #; + 7,
+ 7, = 0.55% for building materials (Ljunggren and Ottosson, 1995); however,
the case can differ from one situation to another since in case of lightly damped
metal structures can have relatively high #,. The boundary or edge or so called
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coupling loss factor for a plate with area S and critical frequency f. can be written
as (see Eq. (2.254)):

c) Lo,
- cUa __ AUa (4.184)

= ! —
s, wisE. %S

where L; and a; are edge lengths and their absorptions coefficients, which can
simplified by setting the plate circumference, U, and the average absorption
coefficient, ¢, which can lie in the interval: 0 << 0.3; one can also use Fig.
6.9, Chapter 6 to determine . Eq. (4.184) indicates that the boundary losses
decrease as area increases. If there is sufficient data on the surrounding building
elements, it is possible to calculate the coupling losses according to the method
described in Chapter 6. In most masonry walls and floors, most of the damping is
due to the coupling loss at the edges, which is frequency dependent.

An approximate empirical expression for the coupling loss factor for common
walls and floors made of concrete, lightweight concrete and masonry is (Craik,
1981):

=1/ (4.185)

This means that average absorption coefficient in Eq. (4.181), a= 0.2. However,
the latter expression cannot be made general to most building materials, and as
such it may be used as very rough estimate.

A general approximate expression for the total loss factor for most typical
building elements is presented as (EN ISO, 1997):

7=, +— s (4.186)

485\[f
Eq. (4.186) indicates that as frequency increases, the total energy losses
decreases and approaches that of material damping.

The energy losses due to radiation of sound into air, #,, in many building
structures are usually small but can be important for lightly damped metal
structures. In addition, the material loss factors, 77, of metals can increase with
strain amplitude, but the loss factors of plastics and rubbers can approximately be
independent of strain amplitude up to strains of the order of unity (Beranek and
Ver, 1992). The loss factors of some flowing or creeping materials tend to vary
noticeably with temperature and frequency. Further, 7; is weakly dependent on
the frequency and so it can be taken as constant, for practical reasons.

It is noteworthy to indicate that when calculating the transmission loss of
infinite plates, the total loss factor is often taken as the material damping only.
However, as indicated earlier, this is not totally accurate as there is no infinite
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plate in reality and, therefore, the total loss factor for a plate in a building should
be calculated considering all the energy losses, as discussed earlier.

4.11 Sound Transmission Loss of Holes and Slits

Sound leakage occurs often in typical building systems, for instance, airborne
sound leaks through an open air path at the wall connections between two rooms.
Ventilation systems and ceilings that are not airtight can be a source of sound
leakage. In some wall sections cracks can be seen. These are very undesirable
because of sound leakage. All sound leaks are important because sound will
travel through any opening with little loss. For example, a very small air hole in a
brick wall can easily reduce insulation from 50 dB to as low as 20 dB. Cracks,
gap around pipe work through partition, louvred doors, porous construction, etc.
are, therefore, to be avoided. For example, the lightweight, porous sound-
absorbing tiles or panels are relatively poor isolators. The sound transmission
loss of holes and slits (circular and slip-shaped apertures in wall) can be
increased substantially by sealing them with either porous sound-absorbing
material or an elastomeric material or designing them as silencer joints.
Prediction of the sound transmission loss of such acoustically sealed openings is
presented below.

4.11.1 Calculation procedure

The sound energy that is transmitted through a typical partition, W, is very little
in relation to the amount of incident energy, W,,. For example, one can expect
that a concrete wall can have a transmission loss (sound reduction index) of
about 50 dB in the mid- frequencies range, i.e.

=W, /W, =10 (4.187)

mn

where 1 is the sound transmission coefficient. Many slits and openings in the
ceiling and/or wall can allow sound energy to escape the room. For such slits and
openings, the reduction sound index is roughly O dB. This implies that even a
very narrow slit or opening deteriorates the wall insulation. For instance, a crack
of about 0.1 mm along the edge of concrete partition (between flats) can be very
deteriorating for the sound insulation.

Circular holes
Approximately, the sound reduction index of a round hole, at quite low
frequencies obeys (see Gomperts, and Kihlman, 1967):
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n’sin?[K,(L+2e)|+ 4K}
16K}

R, = IOIOg[ J (Kp<2) (4.188)
where K, = 2nfro/ ¢, f is the frequency (Hz), rq the radius of the hole (m), ¢ the
sound speed in the air (m/s), L = d / ry, 0 is the hole length (m), e is the end
correction (non-dimensional); in general, the end correction for a circular hole e
is taken as, e = 0.6. The factor n depends on the location of the hole in the wall:

n =2, if the hole is at the middle of the wall; n = 1, if the hole is along one of the
wall’s edge; and n = 1/2 if the hole is near to the corner.

In general, a hole in the middle of the partition gives a less deterioration in
sound insulation than a hole along the edges and at the corner; the difference can
amount to 6 and 12 dB, respectively (for long holes and low frequencies).

At high frequencies (K, > 2), one can approximate the hole transmission loss

as R, = 0; see also Mechel (1986, 1987).

Slits

For oblong slits, the sound reduction index with respect to frequency is

calculated according to a similar approximate formula:

2n” sin?[K (L +2e)]+ 4K,
8K,

J (Ky< 1.5) (4.189)

R, = IOIOg(

where K= 2n f f/ ¢, B is the width of the slit (m) (the lowest cross-dimension),
L=4/p,dis the depth of the slit (m); which is often taken as the wall thickness.
The coefficient, n, takes the following values: n = 1, if the slit is in the middle of
the wall; n = 1/2, if the slit is along the wall’s edge. The end correction, e, in this
case, is strongly dependent on the frequency as compared with the circular hole.
In calculations, e is obtained using the following expression (only for long
narrow slits):

e=m){In@E/K,)~7) (4.190)

where y is Euler’s constant = 0.57722. Thus, the factor e is a function of K.

In practice, the sound reduction index of a slit is often negative: —10 dB to —
15 dB for fairly broad frequency range and for long narrow slits. This should not
be understood as a contradiction with the definition of transmission loss, R;
owing to the sound wave character, a greater part of the wave front of the
incident sound is transmitted than what is given by the geometric area of the
opening. At high frequencies, i.e., K;; > 1.5, the reduction index is approximated
as 0 dB.
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Approximate formula for small holes
The sound transmission loss of a small round hole with radius ry << A (=c¢/f)in a
thin plate of thickness # is well approximated by (Cremer, 1971):

R, = 2010g[mj (4.191)

o2

Eq. (4.191) indicates that small holes in thin partitions (k << r) yield a frequency-
independent sound transmission loss of R, = 1 dB; however, R, = 0 dB is
frequently used in practice. Note, however, that Eq. (4.191) is only valid for
small round holes. Long narrow slits can have a negative sound transmission
loss, as discussed above.

The net (composite) sound transmission loss for a plate with an opening can
be determined using Eq. (4.116) in which sound transmission loss of the opening
is obtained using the relevant expressions of the opening, as presented in this
section; refer also to Example 4.8 and Example 4.11.

Discussion

The sound leakage via small holes and long slits has quite different effects on the
measured sound reduction index curve, as shown in Fig. 4.34. The leakage from
slits results in a wide dip in the transmission loss curve, while leakage over a
smaller surface gives a characteristically spiny curve.
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Fig. 4.34 Sound reduction index for a wall with a narrow opening (slit) along the adjoining wall.
(====), measured R with sound leakage; (— ==), estimated R after soundproofing (sealing or
caulking) the opening.
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Usually, slits are essentially more dangerous to sound insulation than round
holes; the conventional keyhole in a door is thus totally safe compared to the slits
or opening between the door leaf and frame. This concerns also the situations
whereby the door is over-folded since the type of slits has inconsiderable effect
in this case. A wall with a potential R,, of 60 dB, which has a hole of only
0.001% of the total wall area (10 x 10 mm hole in a 2.4 x 4.2 m wall), can be
reduced to an effective R,, of 50 dB.

As the hole area increases, eventually the rating is determined entirely by the
hole area. The higher the acoustical isolation that is sought, the more important it
is to eliminate all sound leaks. Sealing the outlets (such as electrical) properly
increases the R,,. Even if the holes are rather large, the presence of glass fibre in
the cavity helps to reduce transmission through the leak. Because of the losses in
the sound absorber, the transmission loss of the hole is no longer zero. If
electrical outlets must be installed in a party wall, they should be well sealed and
be offset from each other along the wall. Further details are presented in the
following section.

Example 4.11: A wall has a transmission loss of 30 dB with no opening in the
wall. If an opening having an area equal to 10% of the total wall area is added in
the wall, determine the overall transmission loss (sound reduction index) for the
wall with the opening included. If the transmission loss of the wall is increased to
50 dB, would this improve the overall transmission loss? Discuss the practical
consequences.

Solution
The transmission loss for the opening is R = 0. From Eq. (4.116), the total
transmission loss for the wall with the opening included is:

R, =10log _S;n,m =10 dB
0.1S +1077"7(0.95)

As can be observed, an opening of only 10% of the total wall area reduces the
transmission loss from 30 dB to a value of 10 dB. After the wall’s transmission
loss increases to 50 dB, R, = 10 dB, which means that there is no advantage of
increasing the transmission loss of the wall, itself. If the noise reduction for a
wall is to be effective, any openings must be as small as possible or completely
removed, if practical.
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4.11.2 Acoustical treatment

Sound leaks can significantly reduce the effectiveness of a system. They can
easily occur at the perimeter of walls and floors where caulking is absent or
improperly installed, or where a penetration is made to add some service such as
electricity or plumbing. The higher the acoustical isolation that is sought, the
more important it is to eliminate all sound leaks. In practice, slits and openings
cannot always be avoided and so a remedy plan must in this case be considered.
The principle for soundproofing (sealing or caulking) to reduce sound leaks is
depicted in Fig. 4.35. All penetrations and fissures in a wall or floor must be
thoroughly caulked, all windows and doors must be tightly weather stripped and
holes for services properly sealed. Joints between the top of walls and roof or
floor assemblies should be sealed with elastomeric joint sealants. The joint space
behind the sealant backing can be filled with mortar, grout, foam, cellulose fiber,
glass fiber or mineral wool.

Partition

Mineral wool

Sealent

Fig. 4.35 The principle of soundproofing of an opening or hole in a wall/floor.

In order to increase the sound insulation of ceilings, a layer of fibreglass batt
insulation is installed on top of the ceiling tiles. This increases the thickness and
effectiveness of the ceiling assembly, helps to seal some cracks, and also helps to
absorb sound in the plenum. Wherever electrical boxes or other recessed fixtures
are installed in gypsum board partitions, the space between the gypsum board
opening and the box should be caulked.

The windows and glass doors must be installed and sealed into the building
fagade so that it would not introduce significant extra air infiltration. Higher air
infiltration will give lower sound insulation. The detrimental effect of air
infiltration increases as the sound insulation increases. Doors and windows are a
particular problem for sound transmission. With doors, the problem is the cracks
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around the edges, particularly the large gap at the bottom. With windows, the
problem is the glass. Suggestions for treatments are:

a. If acoustical privacy or noise is a particular problem, automatic door bottoms
to seal the gap at the bottom of the door should be installed. They can easily be
installed at any time in any wood door.

b. If acoustical privacy or noise is a particular problem and windows are needed,
double glazing should be used and operable windows gasketed.

c. Wherever possible, hollow metal frames that include gasketing for all doors
may be installed. This permits sealing of any door in the future simply by
installing the automatic door bottom.
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Appendix ® The material damping factor of metals can increase with strain amplitude, but the damping factors
of plastics and rubbers can approximately be independent of strain amplitude up to strains of unity.
Table A. Mechanical properties of solids under standard room conditions. ¢y is the longitudinal The damping factors of some flowing or creeping materials can also vary with temperature and
speed of sound; p is the material density; # is the material damping coefficient (loss factor); E is frequency.
Young’s modulus; and is u Poisson’s ratio *.

; : ¢ The second value concerns Aluminum type 2014, The Poisson’s ratio of aluminum can also be
Material p n E (GPa) 0.345.

(kg/m’) (x10° N/m?)

Aluminum © 2700-2800  |0.0001-0.001 65.2-72 0.33-0.34
Asbestos concrete 2000 0.007-0.02 28 0.1-0.05
Asphalt 1800-2300  [0.3-0.4 7.7 0.35-0.38
Brass ¢ 8500-8710  0.002 89-95 0.33-0.37
Brick 1800-2300  [0.01-0.02 16.7-24 0.20
Chipboard 625-750 0.020 0.34-1.5 0.08
Concrete (dense) © 2300-2400 0.005-0.02 20-36 0.1-0.30
Concrete (light) 1300-1500  [0.005-0.02 3.8 0.13
Concrete (porous) 500-600 0.01 1.5-2 0.13
Copper 8900 0.002 46-125 0.35
Cork 120-125 0.13-0.17 0.025 0.0001
Glass 2500-2600  {0.0006-0.0013 [60-70 0.2-0.21
Granite 2690 0.001 44.5 0.28
Gypsum board 650-1200 0.006-0.03 2.3-29 0.13-0.3
Lead 11000-11300 [0.015-0.02 11.6-13.8 0.40-0.43
Lexan | 1200 0.015 1.80 0.38-0.40
Marble 2800 0.001 51.5 0.25-0.26
Masonry block 1100 0.006-0.007 10.5 0.09-0.10
(0.15m =6 in)
Plaster, solid 1700 0.005-0.10 29.2 0.30
Plexiglas & 1150 0.020-0.04 3.4-5.6 0.40
Plywood 600 0.01-0.040 5-12 0.40
Polyethylene " 935 0.010 0.42 0.34-0.35
Pyrex ' 2280-2300  [0.004 58.4 0.23-0.24
Rubber (hard)’ 950-1250 0.080 1.7-1.9 0.40-0.50
Sand, dry ¥ 1500 0.06-0.12 0.03 0.20-0.45
Steel' 7700-7850  0.0001-0.01  [186-210 0.27-0.31
Tin 7280 0.002 4.4 0.39
Wood (oak, along 700-1000 0.008-0.01 10.9-11.2 0.15
grain) 640 0.020 9-13.4 0.15
Wood (pine) ™ 7130-7140  |0.0002-0.0003 |13.1 0.33

Zinc

4 The second value concerns brass (red). Some kind of brasses have E = 125 GPa.

¢ For in-situ normal concrete used in composite structures, dynamic E = 30-38 GPa. For lightweight
concrete (density of 1800 kg/m3), dynamic E =22 GPa. For reinforced concrete, it is recommended
that o = 2400 kg/m’, while for concrete without reinforcement £ = 2300 kg/m®. Concrete type K
250, E =26 GPa; concrete type K 350, E =31.5 GPa. Poisson’s ratio, z = 0.3, secems to be
reasonable for many types of concrete.

" Trade name for polycarbonate (plastic) sheet.

& Trade name for plastic sheets of various thickness used in residential and commercial glazing.
Some types of Plexiglas or Lucite has # = 0.002.

" The most common form of plastic ( e.g., in plastic bags).
" A brand name for heat-resistant glass.

I For rubber (small strain), £ = 0.01-0.1 GPa. The dynamic E of rubber differs from its static E due
to elasticity. However for a very hard rubber that behaves similar to a rigid material, the two values
are approximately equal.

% In sand as well as plaster, the parameters in table are very rough as they depends on grading,
stress history, etc. The same thing concerns concrete and similar structures.

' The results applies approximately to iron. The loss factor of structures of these materials are
sensitive to construction techniques and edge conditions.

™ E =9 GPa is for pine (along grain). For wood waste material bonded with plastic of density 23
kg/m’, p =750 kg/m®, 5 = 0.005-0.01.

Table notes

" The critical frequency f. of the plate can be obtained from the following expression:
fo=M./ M,, where the frequency product: Mf. =3 c*plxe, (unit: Hz-kg/m?) and M= ph
(unit kg/m?). The sound speed in plate is found from: ¢;={E/p (1-*)} "%




