
Master’s Dissertation
Engineering

Acoustics

YUZHAO CUI and YILIN WANG
 Report TV

BA
-5055

Y
U

ZH
A

O
 C

U
I and Y

ILIN
 W

A
N

G D
EV

ELO
PM

EN
T O

F SM
A

R
TPH

O
N

E A
PP FO

R
 R

EV
ER

B
ER

A
TIO

N
 TIM

E M
EA

SU
R

EM
EN

TS IN
 R

O
O

M
S W

ITH
 FU

R
N

ITU
R

E

DEVELOPMENT OF SMARTPHONE
APP FOR REVERBERATION TIME
MEASUREMENTS IN ROOMS WITH
FURNITURE

TVBA-5055HO.indd 1TVBA-5055HO.indd 1 2018-11-03 13:47:272018-11-03 13:47:27

DEPARTMENT OF CONSTRUCTION SCIENCES

DIVISION OF ENGINEERING ACOUSTICS

ISRN LUTVDG/TVBA--18/5055--SE (1-72) | ISSN 0281-8477

MASTER’S DISSERTATION

Supervisor: DELPHINE BARD, Associate Professor, Div. of Engineering Acoustics, LTH, Lund.

Examiner: JUAN NEGREIRA, Assistant Professor, Div. of Engineering Acoustics, LTH, Lund.

Copyright © 2018 by Division of Engineering Acoustics,
Faculty of Engineering LTH, Lund University, Sweden.

Printed by V-husets tryckeri LTH, Lund, Sweden, November 2018 (Pl).

For information, address:
Division of Engineering Acoustics,

Faculty of Engineering LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: www.akustik.lth.se

YUZHAO CUI and YILIN WANG

DEVELOPMENT OF
SMARTPHONE APP FOR
REVERBERATION TIME

MEASUREMENTS IN ROOMS
WITH FURNITURE

1

Abstract

Room acoustics, as a branch of architectural acoustics, has got more and more
attention nowadays. One of the aims of the room acoustics is to develop different
method to evaluate the acoustic performance of the rooms and to address human
acoustic comfort needs. Meanwhile, the process of reverberation plays an important
role in room acoustics, and it is also an evaluation standard of evaluating room
acoustics effects.

Reverberation time: The time it takes for a signal (sound) to drop by 60dB, which is
an essential parameter about the “echo” in measured room. The reverberation time in
a room depends on its absorption value and volume. If the volume of the room is large
and the absorption value is small, RT60 is long. On the contrary, with a small volume
and large absorption value of a room, RT60 will be short. More importantly, the sound
will be unnatural or ambiguous if RT60 is too short or too long.

Reverberation time is one of important parameters in room acoustics. It is employed
as a standardized method to evaluate the acoustic comfort of an enclosure, which is
one of the reasons why we research on this project.

Nowadays Android phones are very popular around the world. In the statistics of
operating systems of worldwide smart-phone in 2017, Android operating system’s
market share is 85.9% in the word, which means Android device has the biggest
number of users in the world.

From what have been discussed above, the direction of our thesis is designed. The
goal of our project is to build a convenient and fast Android app. This app can
measure the reverberation time of indoor environment using Android phone, then
allows user to store the measured data in this phone for further use.

2

Acknowledge

First of all, we would like to thank our supervisor and examiner: Delphine Bard and
Juan Negreira. Because of their patient teaching and rich standard experience
supporting, that help us fast understanding the related knowledge and overcome the
obstacles in this work. What is more, we would like to thank all the help of PHD,
teachers, classmates in Wireless Communication and Acoustics in our study period.

I (Yuzhao Cui) would like to thank my partner Yilin Wang for his collaboration and
effort put in this work firstly. Furthermore I want to express my gratitude to Cheng
Qian , who once helped our measurement and provided useful advice .

I (Yilin Wang) want to thank my thesis partner Yuzhao Cui at first, for his help we
cooperate and complete the thesis work perfectly. And I also would like to thank my
friends, for their good advice and idea let us get out the difficulty in the work.

3

Table of Contents

Abstract.. 1
Acknowledge..2
Table of Contents..3
List of Figures.. 5
List of Tables.. 6
List of Equations.. 7
List of Acronyms..8
Chapter 1 Introduction..9

1.1 Decibel...9
1.2 Reverberation.. 10
1.3 Reverberation Time... 10

1.3.1 Reverberation Time Behaviour... 10
1.4 Android APP Introduction... 11

1.4.1 Internal of APP (RT60 Measurement)... 11
1.4.2 External of APP... 11

1.5 Previous Work... 12
1.6 Organization of Thesis.. 12

Chapter 2 Method to the Android APP...13
2.1 Reverberation Time Measurement.. 13
2.2 Method to the Internal Structure of APP...15

2.2.1 Fast Fourier Transform..15
2.2.2 Octave Band Filter...16
2.2.3 Pink Noise... 17

2.3 External Operate Structure of APP..18
Chapter 3 Detailed Introduction about Working Process... 23

3.1 Programming Language and Development Tool...23
3.2 Sound Recording... 24

3.2.1 Apply Noise Suppression.. 25
3.2.2 Select Audio Input Source...27

3.3 Data Acquisition..29
3.3.1 Frequency Band Separation...29
3.3.2 Calculate Sound Pressure Level..32

3.4 Data Analysis...33
3.4.1 Find the highest Sound Pressure Level point.. 33
3.4.2 Fix the starting point of linear decay...33
3.4.3 Fix the ending point of linear decay..34
3.4.4 Calculate RT60 results...36

Chapter 4 Data Comparison... 37
4.1 Nor140...37
4.2 RT60 comparison.. 38

4

4.2.1 Measurement rooms.. 38
4.2.2 RT60 for two rooms by Nor140.. 39
4.2.3 RT60 for two rooms by virtual phone on laptop................................... 41
4.2.4 RT60 for two rooms by two android phones...43

4.3 Comparison by each test equipment in each room..47
4.4 Inaccuracy analysis..49

Chapter 5 Discussion..52
Chapter 6 Conclusion... 53
Chapter 7 Future Work... 54
Reference..55
Appendix.. 56

Recording.. 56
IFFT...58
FFT.. 60
Analyze..62

5

List of Figures

Figure 1 : Simplified RT60 measurement diagram [10]..13
Figure 2 : T20 Value measurement [10].. 14
Figure 3 : Example signal after FFT in time and frequency domain [11]............. 15
Figure 4 : Screenshot for access screen in app..18
Figure 5 : Screenshot for setting room information screen in app........................ 19
Figure 6 : Screenshot for the process in measuring RT60 in app..........................20
Figure 7 : RT60 of Bedroom by Samsung Galaxy S7 Phone................................21
Figure 8 : Function of ‘Room Information in Detail’ button................................ 22
Figure 9 : Flow chart of the whole measurement process of this app................... 23
Figure 10 : Flow chart of sound recording..24
Figure 11 : Core codes about noise suppression in ‘Speex’..................................25
Figure 12 : SPL-time plot (without Speex)... 26
Figure 13 : SPL-time plot (with Speex).. 26
Figure 14 : SPL-time plot (Microphone as source)...28
Figure 15 : SPL-time plot (Voice Communication as source)...............................28
Figure 16 : Code of ‘onFftDataCapture’ function... 30
Figure 17 : Steps to increase frequency spectrum resolution................................30
Figure 18 : Maximum SPL point in 4000 Hz from the example measurement.... 33
Figure 19 : The starting point of determined linear decay line in 4000 Hz from the

example measurement... 34
Figure 20 : The lowest SPL point in 4000 Hz from the example measurement....34
Figure 21 : The ending point of determined linear decay line in 4000 Hz from the

example measurement... 35
Figure 22 : Nor140.. 37
Figure 23 : Specific RT60 measurement room..38
Figure 24 : Normal bedroom...39
Figure 25 : RT60 comparison in Room 1 by Nor140..40
Figure 26 : RT60 comparison in Room 2 by Nor140..41
Figure 27 : RT60 comparison in Room 1 by Virtual phone..................................42
Figure 28 : RT60 comparison in Room 2 by Virtual phone..................................43
Figure 29 : RT60 comparison in Room 1 by Samsung... 44
Figure 30 : RT60 comparison in Room 2 by Samsung... 44
Figure 31 : RT60 comparison in Room 1 by Huawei..45
Figure 32 : RT60 comparison in Room 2 by Huawei..46
Figure 33 : Comparison about mean RT60 by each equipment in room 1............47
Figure 34 : Comparison about mean RT60 by each equipment in room 2............47
Figure 35 : Comparison about standard deviation in room 1................................48
Figure 36 : Comparison about standard deviation in room 2................................48
Figure 37 : An example of an inaccurate test.. 49
Figure 38 : Comparison between inaccurate data and standard data.................... 50

6

List of Tables

Table 1 : Official frequency range of octave band filter and one-third octave band
from 125Hz to 10000Hz..17

Table 2 : Audio source options.. 27
Table 3 : Start and end samples for each Octave Band in this project.................. 31
Table 4 : RT60 for Room 1 by Nor140... 39
Table 5 : RT60 for Room 2 by Nor140... 40
Table 6 : RT60 for Room 1 by Virtual phone..41
Table 7 : RT60 for Room 2 by Virtual phone..42
Table 8 : RT60 for Room 1 by Samsung... 43
Table 9 : RT60 for Room 2 by Samsung... 44
Table 10 : RT60 for Room 1 by Huawei... 45
Table 11 : RT60 for Room 2 by Huawei... 46
Table 12 : Groups of inaccurate data in Room 1...50

7

List of Equations

Equation 1 : SPL Equation.. 9
Equation 2 : Sabine Formula...10
Equation 3 : Reverberation time measurement equation.......................................14
Equation 4 : Calculation of Sampling Interval (before increasing frequency

spectrum resolution)..30
Equation 5 : Calculation of Sampling Interval (after increasing frequency

spectrum resolution)..31
Equation 6 : Calculation formula of specific frequency value for each sample....31
Equation 7 : Calculation formula of sound’s decibel value...................................32
Equation 8 : Calculation formula of RT60 (with slope) in this project.................36

8

List of Acronyms

RT60: Time for sound to decay to 60dB of its original intensity. Reverberation time.
T20: Time for sound to decay to 20dB of its original intensity.
T30: Time for sound to decay to 30dB of its original intensity.
FFT: Fast Fourier Transform
IFFT: Inverse Fast Fourier Transform
Lp: Sound Pressure Level
SPL: Sound Pressure Level

9

Chapter 1 Introduction

In 1994, noise protection becomes a separate topic in the Swedish national building
regulations for the first time. Noise sources could be the traffic noise from the outside
of the building and it could also be the noise generated from the neighbors or even
from the self-generated noise. Among these different kinds of noise, the low
frequency noise is paramount annoying, especially the impact noise lower than 100Hz
[1]. However, the frequency range of the current standers are restricted from 100Hz to
3150Hz (ISO 140, ISO 171). Although adaptation terms are added in the evaluation,
not enough attentions are paid to the low frequency noise [1-3]. In order to evaluate
and improve acoustic performance, different standardized parameters are introduced,
such as airborne sound reduction index (ISO 717-1, ISO 140-4, EN ISO 12354-1, ISO
16283-1) and airborne sound transmission class (ASTM E413), weighted standardized
impact sound pressure level (ISO 717-2, ISO 140-7, EN ISO 12354-2, ISO 16283-2)
and impact sound insulation index (ISO 717-2, ISO 140-7, EN ISO 12354-2, ISO
16283-2), etc. Among these different indicators, the reverberation time evaluation is
one of important parameter. Since it can not only evaluate the sound decay and
describe the acoustic character of a room but can also evaluate the absorption
coefficient through standard method (ISO 3382-1).

Reverberation time is one of the most important and stable indicators in room
acoustics. It is the basic parameter of sound quality evaluation, material acoustic
performance testing, noise control and many other fields. The reverberation time has
always been recognized, with a clear concept and objective parameters that are well
correlated with subjective feelings [4]. Moderating reverberation can significantly
improve the sound quality and change tone and type of the sound.

Except reverberation time there are also many indicators which could characterize the
acoustic performance of room, such as speech intelligibility (D50), clarity for speech
(C50) and clarity for music (C80), etc.

1.1 Decibel

Decibel is a unit of measure the proportion of two identical units, which expresses the
ratio of a value to a reference value, and its unit is dB. It is widely used in many fields
such as electronics, signal, communication and so on [5]. In this thesis, decibel is used
to measure the SPL(sound pressure level), and the formula it is shown below:

Equation 1: SPL Equation.

10

In this equation, A1 is the root-mean-square valued of the SPL which can be acquired
by the android equipment. It is very useful in measurement part about the sound,
which describes a ratio by using modest size number.

1.2 Reverberation

Reverberation is an acoustic phenomenon in a confined space. As we all know, when
sound waves are reflected in the surrounding walls in indoor environment this
phenomenon will be repeated many times. If this kind of reflection continues to exist
after the sound reaches directly to the listener for 50 ms, and lasts for a while until it
decays and disappears, which sounds to be remnant. This process and phenomenon is
called reverberation.

Reverberation is the result of constantly reflection of sound by the interface of the
objects sound touches. In indoor environment, it can increase the sound and reduce
the speaking clarity. Under some certain conditions, reducing reverberation is vital.
For example, in the space for language use such as cinemas, classroom, recording
studio, meeting room, etc., reverberation should be reduced to make the speaking
more clear [6]. Therefore, reverberation is needed sometimes, for example, playing
music in concert halls, theaters and so on, to make music more smooth and enjoyable.

After all, it is very necessary to use the different reverberation effects to the rooms
that with different usage requirements.

1.3 Reverberation Time

After the sound source stop sounding, the sound energy in the space starts to decay
immediately, and the time it takes from the SPL self-stabilize to attenuation of 60 dB
is called reverberation time (RT60). The indicator describing the reverberation effect
is RT60, with a unit of seconds. More details about Reverberation Time are
introduced in chapter 2.1.

1.3.1 Reverberation Time Behaviour

There is a mathematical relationship between RT60 and indoor sound absorption,
which is the famous Sabine formula in architectural acoustics:

Equation 2: Sabine Formula.

In this formula, K is a constant related to the space humidity. In our case, the SPL are
measured in the ambience condition. As a result, K=0.161 s/m. V is the room volume,

11

S is total area of the room wall, and a is the effective sound absorption coefficient of
the room surface.

It can be seen from Sabine Formula that the larger volume of the room, the longer
RT60. And the larger average sound absorption coefficient, the shorter RT60. So for
the huge space such as the gymnasium, the RT60 will be very long if the sound
absorption is not well performed, which will seriously affect the clarity of the speech.

Since the sound absorption is also related to the frequency, so RT60 is different at
different frequencies. In general, the room sound quality index refers to the
intermediate frequency reverberation time. According to the research, the ideal RT60
value is 1.8-2.2 seconds for concert hall, 1.3-1.5 seconds for theater, 1.0-1.4 seconds
for multi-purpose auditorium, 0.6-1.0 seconds for cinemas, 0.4-0.8 seconds for
ordinary classrooms, 0.2-0.4 seconds for studio, and for the gym is less than 2.0
seconds [6].

Therefore, the correct materials can be selected in architectural design to make a
control of RT60, and ensure that the sound quality meets the requirement of users.

1.4 Android APP Introduction

1.4.1 Internal of APP (RT60 Measurement)

In our project, after user pressing the ‘Generate impulse’ button, the app start
recording sound for 5 seconds. Sender (sound source) should generate a signal in this
period such as clapping hands. When recording is finished, press ‘Analysis’ button to
start analyzing the recorded sound. In the process of analyzing, with the added Octave
Band filter, this sound will be transformed into the relations between SPL and time of
the target Octave Bands.

Then RT60 in different Octave Band can be calculated by using the reverberation time
calculation algorithm. This part about calculation algorithm will be introduced in
detail in chapter 3.

1.4.2 External of APP

This APP provides a simple and convenience operation interface: users can type name,
size of the room (length, height and weight), picture of measured room for easily
recording and recognizing. Due to different emission intensity (soft or hard clapping)
and different background noise interruption, the values of RT60 measured by the same
device could be different in the same room. The way to solve this problem is sender
and receiver each has at most 5 opportunities to measure the reverberation time. So

12

there can be up to 25 groups of test results can be measured out and the results can be
more accurate after calculating the mean value. After measurement, users can check
the line chart of the measured values for comparison, as well as the detailed
information about the measured rooms.

Another function of this APP is that it allows the users to choose whether to store the
measurement results into his or her Android phone’s storage or not. Users can print
out or mail the files of measurement results if needed. We will introduce all of these
functions in detail in chapter 2.

1.5 Previous Work

In the international standard “Acoustics – Measurement of room acoustics
parameters”, it is figured out that reverberation time of a room is a predominant
indicator in acoustical properties. The standards in this book give us a reasonable
agreement in the measurement such as SPL, energy calculation, energy ratio,
background noise level etc. [7].

In the book “Sound Insulation” [8] written by Carl Hopkins, “Building Acoustics”
written by Tor Erik Vigran, a deeper study of room acoustics was taken. The details of
sound transmission, sound absorption, sound reflection, reverberation time
measurement and so on are described in detail in the book. It provides an abundant
standard support on Fourier analysis field in Java coding [9].

1.6 Organization of Thesis

The thesis work is organized with:

Chapter 1Make a general introduction of reverberation time and our APP design.
Chapter 2 Shows the method for the internal and external of this APP in detail.
Chapter 3 Introduce how the java code application works in our project.
Chapter 4 List the results in different room with different android phones and make a
comparison with official equipment.
Chapter 5&6Make a conclusion and discussion what has been done in this thesis.
Chapter 7 Give some suggestions for the future work.

13

Chapter 2 Method to the Android APP

2.1 Reverberation Time Measurement

As we have known in Chapter 1, reverberation time is the time required for the
reflections of a direct sound to decay 60dB [10]. Therefore, because different rooms
have different sizes and different materials, we can find out that the reverberation time
is always different by Sabine Formula.

Here is the very simplified RT60 measurement diagram when an impulse is generated,
such as hands clapping in the room.

Figure 1: Simplified RT60 measurement diagram [10].

Figure 1 shows that when the sound source generates an impulse, the sound pressure
level(Lp) increases and reaches to the highest value after a short time, RT60 is the
time it takes for the sound drops from the time point of the highest Lp value to the
time point when it decay 60dB. The reason why the slope of Lp deceases process is
less steeper than that of Lp increases process is because the sound is reflected by room
walls and objects in indoor environment.

There are many ways to measure RT60, the mostly common method is through T20
and T30. The reason is that it is difficult to generate a ‘powerful enough’ sound which
has a decay up to 60dB in a room, especially at lower frequencies. We assume the
decay is linear, so RT60 can be measured as the time it takes the sound to decease
20dB from original and multiple 3, or the sound to decease 30dB and multiple 2.
Figure 2 is shown that make an easy way to understand how to measure T20 value.

14

Figure 2: T20 Value measurement [10].

For the figure 2 express the SPL decay when a stable sound source turns off. T20
starts to be counted time when Lp decreases 5dB and stops when Lp decreases 20dB
again. The time it takes is T20, and the decay is linear.

There are two different methods to measure the reverberation time. They are
impulsive method and interrupted noise method (Figure 1 and 2). It has to mention
that the interrupted noise method needs extra external equipment to generate the noise
whereas the impulse method doesn’t need any other specific instrument. In this
project, the impulse method is employed to evaluate the reverberation time.

In our app project, hand clapping is taken as the recommended sound source to find
out RT60. However, during the practical measurement, it can not be avoided that for
some certain measurements, the Lp drop condition of recorded clapping is not as ideal
as figure 2 shows. The reason for this can be the limitation of our Android devices’
recording hardware, contingency of measurements, influence of the indoor
environment in measurements and so on. For this case, we improved our calculation
algorithm based on the existed one: Firstly the decay is assumed to be linear. Then a
suitable start point and end point are determined which are thought to be accurate
enough to express the decay process. Finally, the RT60 results are calculated
according to the Lp and time at these two points. The calculation formula is shown as
following:

Equation 3: Reverberation time measurement equation.

What’s more, the solution for how to find the suitable start and end point, and how to
apply it to Java coding will be introduced more in detail in chapter 3.3.

15

2.2 Method to the Internal Structure of APP

2.2.1 Fast Fourier Transform

This APP measures RT60 in each of selected frequency ranges. The solution is to use
Fast Fourier transform to transform the signal (hands clapping sound) from time
domain to frequency domain and find out the relation between time and SPL of each
frequency range, then calculate the reverberation time using RT60 measurement
method.

The fast Fourier transform (FFT) is an algorithm that samples a signal over a period
of time (or space) and divides it into its frequency components [11]. Any periodic
signal can be represented as an infinite stack of sinusoidal signal at different
frequencies.

The mathematical perspective way of FFT is to calculate the frequency, sound press
level and phase of different sinusoidal signals by direct measured sound of hands
clapping. And for the physical point of FFT, it helps us to change the traditional time
domain analysis signal to the thinking of analyzing problems in the frequency domain
[12]. And the following three-dimensional graphics can help us understand this
conversion better:

Figure 3: Example signal after FFT in time and frequency domain [11].

As we can see from figure 3, the time domain signal after the decomposition of FFT
becomes the superposition of different sinusoidal signals, we can analyze the
frequency of these signals and transform it to the frequency domain. Then it is clear to
measure RT60 in each frequency range.

16

2.2.2 Octave Band Filter

The human ear feels the sound frequency from the lowest 20 Hz to the highest 20
KHz, and different frequency bands gives different feelings to people.

20Hz-60Hz: This part can give a strong feeling to the music.
60Hz-250Hz: This part is the low-frequency structure of music, which contains the
basic sound of rhythm part, including the pitch and rhythm sounds.
250Hz-4000Hz: This part contains the low frequency harmonics of most instruments,
while affecting the clarity of sounds such as vocals and instruments.
4000Hz-5000Hz: This is the frequency band that affects the sense of presence
(distance feeling).
5000Hz-16000Hz: This part controls the brightness of the sound, macro brightness
and clarity [13].

It is possible to analyze the source by frequency, but a waste of time, so people
regulate the whole frequency range divided into several parts of the frequency band,
and each one has its specific range, which is called octave band or one-third octave
band. For the octave band, it is called octave width when upper frequency band is
twice the lower frequency band. On the other hand, one-third octave band is the
frequency band which upper band-edge frequency is the lower band frequency times
the cube root of two [14].

One octave Band measurements are used when the frequency composition of a sound
field is needed to be determined. Octave analysis is often used in noise control,
hearing protection and sometimes in environmental noise issues [15].

Mainly used in environmental and noise control applications, 1/3 Octave Bands
provide a further in-depth outlook on noise levels across the frequency composition
[15].

17

Band Number Octave band
center
frequency(Hz)

One-third octave
band center
frequency(Hz)

Lower
limit(Hz)

Upper
limit(Hz)

20 125 100 88 113
21 125 125 113 141
22 125 160 141 176
23 250 200 176 225
24 250 250 225 283
25 250 315 283 353
26 500 400 353 440
27 500 500 440 565
28 500 630 565 707
29 1000 800 707 880
30 1000 1000 880 1130
31 1000 1250 1130 1414
32 2000 1600 1414 1760
33 2000 2000 1760 2250
34 2000 2500 2250 2825
35 4000 3150 2825 3530
36 4000 4000 3530 4400
37 4000 5000 4400 5650
38 8000 6300 5650 7070
39 8000 8000 7070 8800
40 8000 10000 8800 11300

Table 1: Official frequency range of octave band filter and one-third octave band
from 125Hz to 10000Hz.

In our thesis we require to measure RT60 from 125Hz to 4000Hz, as we checked the
table 1 above the frequency range is 125Hz to 5650Hz actually. The way to measure
RT60 in each specific frequency domain is to take sample points as much as we can, it
helps to improve the accuracy of result, in each certain Octave Band, a mean value of
Sound Pressure Level is got for each single time point, finally the one-to-one relations
between Sound Pressure Level and time point for each Octave Band are used to
calculate RT60 value for every Octave Band.

2.2.3 Pink Noise

Acoustic noise is any sound in the acoustic domain, either deliberate (e.g., music and
speech) or unintended. In contrast, noise in electronics may not be audible to the
human ear and may require instruments for detection [16].
Pink noise is one of the most commonly used in signal processing, the frequency
component power of it is mainly distributed in the middle and low frequency band.

18

Pink noise has the same or similar energy compare to the audio data in some
frequency ranges, and the energy is attenuated from low frequency to high, which the
curve is 1/f.
In our thesis work, noise influences us greatly in the production process. The noise is
not only pink noise, but also other kinds of it such as white noise, environmental noise,
recording device noise and so on. We spent a lot of time adding a function called
‘Speex’ by using C++ coding language to help reduce the influence of all kinds of
noise, and data of RT60 becomes more correct. This coding application will be
introduced more detail in chapter 3.1.

2.3 External Operate Structure of APP

As is designed, this app mainly focuses on user experience. When users run this APP,
there are two options will be displayed: ‘Measurement’ and ‘View Old’.

Figure 4: Screenshot for access screen in app.

19

In the Measurement options, people should type in the name and size (length, width
and height) of the measured room. Then set the number of EP and MP which can be 5
at most for each, EP means number of the sender (impulse such as hands clapping)
different positions, MP means number of the receiver (Android phone holder)
different positions. Furthermore, users can take a photo by camera of the phone and
add some notes that marks this room so that it is easy to recognize which room has
been measured.

Figure 5: Screenshot for setting room information screen in app.

After users input the information and press ‘Continue’ button, Measurement operation
interface will be displayed and there are two options named ‘Generate impulse’ and
‘Evaluate’. As we introduced in Chapter 1, Senders are recommended to clap the hand
as an impulse after receiver press ‘Generate impulse’ button, the app will record the
sound during 5 seconds after pressing the generate button. The next step is to start
playing and analyzing the recorded sound when ‘Evaluate’ button is pressed, after a
while the results of RT60 will be measured out and displayed.

20

Figure 6: Screenshot for the process in measuring RT60 in app.

This measurement part will be repeated several times which is determined by Number
of EP times Number of MP. At last a mean value of RT60 at each specific frequency
band will be calculated out after the sender and receiver have done all measurements.
Here is an example mean value of RT60 that we have measured 2×3 times by
Samsung Galaxy S7 phone in bedroom:

21

Figure 7: RT60 of Bedroom by Samsung Galaxy S7 Phone.

After all the measurement for one room is completed and all of these data will be
stored in phone’s storage, the users can repeat this measurement in other rooms and
the system will record all of it. The result can be checked if user press ‘View old’
button in the operate interface and select data of any wanted room. Average RT60 of
the selected room will be displayed at first and remain information of this room will
be displayed after pressing ‘Room Information in Detail’ button. The function of
‘Show Chart’ is to display all measured RT60 data at each octave band and each
measured position in the form of line chart in one figure.

22

Figure 8: Function of ‘Room Information in Detail’ button.

All the measured RT60 data and room information can also be found as a word file
named ‘Exported data’ with suffix as date and time when you measured this room,
users can store, print or mail this file if it is needed.

All in all, this APP is accurate because users can measure several times at different
positions in a room and then calculate the mean value, which will approach to the data
precision instrument measured. On the other hand, this APP is very convenient
because it can store all the information about the room, which is helpful to the
researcher to make a decision.

23

Chapter 3 Detailed Introduction about Working Process

In this session, we will introduce the core algorithm in this app in detail. The whole
Java code part can be divided into two main phases: sound recording phase and data
analysis phase. While working, the target Android device will record sound for five
seconds firstly. Six groups of data about SPL in dB and time points are generated for
the six wanted frequency bands as the output of one time’s sound recording process.
Then the code will analyze all the outcome data and finally figure out six RT60 results
of the six octave frequency bands. The whole working process of this app is shown as
following:

Figure 9: Flow chart of the whole measurement process of this app.

3.1 Programming Language and Development Tool

This project is developed based on the programming language of Java and the
development tool is Android Studio 3.1.2.

Java is a high-level object oriented programming language. It is a derivation of C
language, not only containing a lot of advantages of C, but also excluding some of the
C’s concepts which are hard to understand. So Java has powerful functions and is

24

simple to use at the same time. The main features of Java include object oriented,
robustness, safety, platform independence, multi-threading, dynamics and so on.

Android Studio is a integrated development tool released by Google for developing
and testing applications that are targeted at the Android platform. Compared with the
old development tool ‘Eclipse’, Android Studio is more convenient at constructing
program interface, prints more detailed and all round coding messages, has more
powerful intelligent recognition function, generates smaller project items and provides
a better managing system.

3.2 Sound Recording

‘ AudioRecord ’ is a class provided by Android which is used as the method of
recording sound in this app. To start recording, the target device will firstly send a
request to the user for the permission to use its microphone. After getting the
permission, a data stream is created for input data. Then set an array in order to meet
the shortest length demand to save the byte data created in the sound recording
process. The shortest length is determined through the method ‘Audio Record get Min
Buffer Size ’, also there are some parameters such as sampling rate (set as 44100 Hz
in this project) , recording channel and encoding method , etc. This array is the object
of ‘AudioRecord’ and the data in it will finally be imported to the established data
stream. After recording for five seconds, the record will end and the data stream will
also be closed . The whole recording process is shown in the block plot below:

Figure 10: Flow chart of sound recording.

So as to increase the accuracy of the data gotten from sound recording, another two
methods are used to reduce noise in measure environment.

25

3.2.1 Apply Noise Suppression

In order to reduce the influence from natural or contrived noise, applying noise
suppression function is an important step. The Noise Suppression function in‘ Speex ’
is one of the improvement applied in this app.

‘Speex ’is a free, open-source audio compression format which is used for speeching
and communicating. ‘Speex ’provides professional proprietary speech encoder. In
addition, it is designed for Internet applications and contains many useful functions
including Noise Suppression, Voice Activity Detection, Acoustic echo canceler and
so on.

‘Speex’ uses a kind of ‘Short Time Spectral Amplitude-Minimum Mean-Square Error’
(STSA-MMSE) algorithm to achieve noise suppression. ‘STSA-MMSE’ is the
optimal estimation under non-stationary condition, which is based on ‘Weiner
Filtering’. ‘STSA-MMSE’ algorithm takes advantage of the insensitive characteristics
of human ear to audio’s phase transformation to achieve short-time amplitude
spectrum through estimation. After that, it uses the phase information of the audio
with noise to finally compose the enhanced audio with the suppressed noise.

The codes for‘ Speex ’ in this app is written with the coding language of ‘ c++ ’
instead of Java and part of the code about the setting of noise suppression function is
as follows:

Figure 11: Core codes about noise suppression in ‘Speex’.

The parameter of ‘noiseSuppress’ in the plot above stands for the level of noise
reduction and the value of -25 is the default value for this parameter, the smaller this
parameter, the better the effect of noise reduction but at the same time the condition of
audio’s distortion will be more serious, so it is important to keep a balance between
these.

The difference between the accuracy of measurement without and with ‘Speex’ is
shown in the following plots:

26

Figure 12: SPL-time plot (without Speex).

Figure 13: SPL-time plot (with Speex).

It can be seen that the effect of noise is reduced a lot and the impulse becomes more
obvious in the plot when Speex is applied, especially in the frequency bands of 125
Hz, 250 Hz and 500 Hz. The noise suppression function of ‘Speex’ is proved to be
helpful.

27

3.2.2 Select Audio Input Source

As a function of ‘AudioRecord’, it provides several options as the source of recorded
sound for Android device. All the options and theirs corresponding audio sources are
listed below:

Table 2: Audio source options.

According to some existed code examples, ‘the microphone of target device (the
option of ‘MIC’ in the table above) is used mostly as the audio input source when
recording. However during the process of testing all the mentioned options, the option
of ‘Voice Communication’ has the highest accuracy of the tested SPL-Time data.
Switching to this mode is achieved by the code ‘AUDIO_INPUT =
MediaRecorder.AudioSource.VOICE_COMMUNICATION ’. Through the testing of
the other options except for ‘MIC’ and ‘VOICE_COMMUNICATION’, the
measurement accuracy was either too low or the app got collapsed with those options.
Let’s take a comparison between the testing accuracy of option ‘MIC’ and ‘VOICE
_COMMUNICATION’ below:

28

Figure 14: SPL-time plot (Microphone as source).

Figure 15: SPL-time plot (Voice Communication as source).

It can be seen that when ‘Voice Communication’ is set as input radio resource, it
performs better in the measurement accuracy of SPL than ‘Microphone’. The lower
the Octave Bands, the more obvious this difference in accuracy will be. The reason
why this app works better with the source of ‘VOICE_COMMUNICATION’ is that
when this option is selected, based on the original functions of ‘MIC’, the built-in
Acoustic Echo Canceler (AEC) and Automatic Gain Control (AGC) functions are also
opened to improve the quality of recorded sound.

To sum up, two improvement are applied based on original sound recording function:
‘Speex’ and ‘Voice Communication source’. As can be observed from Figure 8 to
Figure 11, the accuracy improved a lot especially in the frequency bands of 125 Hz,

29

250 Hz and 500 Hz. This data is relatively accurate to be used in the subsequent data
analysis part.

3.3 Data Acquisition

After recording sound successfully, the recorded sound will be played once. During
this playing process, the whole five seconds’ period is sampled at around two hundred
time points. In this project, the sampling rate is set as 44100Hz. According to
Nyquist-Shannon Criterion, the highest frequency of audio is 20000Hz and if the
sampling frequency is set as twice of that highest frequency of audio, the original
analog signals can be perfectly recovered. So 44100Hz is chose as the standard
frequency in most conditions. When sampling frequency is set as 44100Hz, it means
that 44100 samples will be taken in every second. In addition, every frame contains
1024 samples. So the length of time for every frame is 1024 divides 44100, which
equals to around 23.22 ms. In this project, the recording period is 5 seconds and the
number of frames is 5000 divides 23.22 which equals to around 215. In other words,
each group of data about SPL and time contains around 215 SPL values and each SPL
value has a corresponding time point and the time interval between every pair of time
points is around 23.22 ms. The time interval of 23.22 ms is small enough compared
with the whole 5 seconds recording period to describe the condition of SPL in the
whole recording process well.

After taking samples, the next step is to divide the sampled sound into different
frequency bands according to ‘Octave Band Filter Standard ’, then the SPL in dB will
be calculated for all the sampled points in each frequency band. Finally, all the SPL
values will be connected and ranked according to their corresponding time points,
which are showed in the form of SPL-time plots in the figures from section 3.2.

Two steps to get the relation between Sound Press Level and time of each target
frequency band will be introduced in detail.

3.3.1 Frequency Band Separation

At each sampled time point, to preliminarily get the frequency domain information of
the recorded sound, a ‘Visualizer’ is set. ‘Visualizer’ is a class of Java and it is used
for the visualization of audio data in time domain. The length of the data it gets for
once, in other words, sampling length is set to be 1024 bytes(the max value) which
means that for one sampled time point, an array of 1024 bytes in time domain is
gotten from this ‘ Visualizer ’.

Then a function called ‘on FFT Data Capture’ is used to do ‘Fast Fourier
Transformation’ and get the data in frequency domain. This function contains three
input parameters:

30

Figure 16: Code of ‘onFftDataCapture’ function.

The first parameter stands for the ‘Visualizer’ mentioned above, the second parameter
‘FFT’ is the name of the output array of this function, the frequency domain data
transformed from those of time domain is saved in the array called ‘FFT’, also the
length of it is 1024 (set as above). The last parameter is the sampling rate of ‘Fast
Fourier Transformation’ , which is set to be 44100 Hz in this project.

After using the function of ‘onFftDataCapture ’ , an array of 1024 bytes is obtained .
It contains 512 complex values , 512 real parts and 512 imaginary parts , which are
uniformly distributed between 0 to 44100 Hz.

However , according to Equation 4 below :

Equation 4: Calculation of Sampling Interval (before increasing frequency
spectrum resolution).

This means that in frequency domain , from 0 to 44100 Hz, samples are taken every
86.13 Hz. However, according to ‘Octave Band Filter Standard’, lower frequency
bands have narrower bandwidth. For example, in the band with center frequency of
125 Hz (88 to 176 Hz), only one sample is located in this band, which effects
accuracy of measurement, especially for lower frequency bands. In other words,
frequency spectrum resolution is not enough.

To increase frequency spectrum resolution, the following steps are applied in this
project:

Figure 17: Steps to increase frequency spectrum resolution.

In the steps introduced above, several zeros were added after the original 512 real /
imaginary bytes to make the total length of real / imaginary array to be 32768.
According to the theory of ‘FFT’, the length of the array to do ‘FFT’ must be the
power of two and if this length is too long, it will affect the whole time to do ‘FFT’.

31

That is why the value of 32768 is selected, improving frequency spectrum resolution
and effecting little on processing time at the same time.

The array length is increased to 65536 (with 32768 complex elements), the
frequency spectrum resolution becomes:

Equation 5: Calculation of Sampling Interval (after increasing frequency spectrum
resolution).

That is to say, samples are picked around every 1.345 Hz uniformly from 0 to 44100
Hz. Now even the narrowest band of 125 Hz (88 to 176 Hz) has relatively enough
samples and frequency band separation will be done next.

According to ‘Octave Band Filter Standard ’, the starting and end samples as well as
their corresponding frequency points for the six target frequency bands as calculated
as following:

Table 3: Start and end samples for each Octave Band in this project.

The numbers in the table above is calculated according to:

Equation 6: Calculation formula of specific frequency value for each sample.

In the complex number array of 65536 sampling time point, the elements are picked
due to Table 2 and they are divided into six groups (corresponding to the six target
Octave Bands). Then each group is sent into the SPL calculation function to get the
value in dB as their own Octave Band for each time point.

32

3.3.2 Calculate Sound Pressure Level

So as to calculate SPL value for each target group, the storage order of the bytes in
each group has to be changed to ‘Little Endian ’order firstly. ‘Little Endian’ stands for
an order that the least significant byte is addressed firstly and all the bytes are
arranged in increasing significance order. The highest address has the most significant
byte (the last).

Then, the SPL values are calculated according to:

Equation 7: Calculation formula of sound’s decibel value.

In the theoretical equation above, the parameter ‘Prms’ is the measured SPL. The
parameter ‘Pref’ is a referenced SPL and theoretically it is set according to the strength
of background sound in the testing environment, for example, 20 micro Pascals,
which is the smallest SPL that human ear can hear.

However, in the coding of this app, the quantity provided by the senors of Android
devices is sound field’s amplitude. So in the code, the ‘Prms’ in the equation above is
replaced by the average amplitude calculated based on the amplitudes of elements in
each byte group and the parameter of ‘Pref’ is replaced by the number of one, which is
the smallest amplitude value that Android devices can ‘hear’. In addition, each SPL
for Android devices in this project at each time point is calculated based on all the
byte elements divided according to Octave Band Filter mentioned before. After that,
for one measurement, six groups of data about SPL for Android devices-Time points
are formed to be resolved to get the six RT60 results.

So far, for each sampled time point, six SPL values of the target Octave Bands have
been calculated out. For one Octave Band, connecting all its SPL values in the order
of time points, we can get a SPL -Time relation of that band and there are six of this
kind of relations in total. This kind of relations are the key gist to calculate RT60
values of those target Octave Bands.

33

3.4 Data Analysis

In this session, the algorithm to calculate RT60 will be introduced in detail. The
whole algorithm is based on the generated six groups of data about SPL-Time, using
these groups of data to calculate the six RT60 results for the six target Octave Bands.

3.4.1 Find the highest Sound Pressure Level point

After obtaining all the six groups of data about Sound Press Level –Time, the point
with the highest SPL value will be found firstly.

The following plot is an example coming from a measurement for 4000Hz band:

Figure 18: Maximum SPL point in 4000 Hz from the example measurement.

The max SPL point in 4000 Hz group is firstly fixed to be 64.72 dB, at 1.941 s as
shown in the plot above.

3.4.2 Fix the starting point of linear decay

The core of this algorithm is to determine a linear decay line and use the negative
value of its slope to calculate RT60.

The starting point of this determined linear decay line is fixed as the point, the gap in
SPL between which and the formerly fixed highest point is the closest to 7dB. In the
standards, this gap is set to be 5dB and the reason why it is increased in this project is
for the consideration of setting the determined starting point a little bit lower than the
true starting point of linear decay in SPL value and increasing the possibility of
completely skipping the echo period.

34

The starting point of decay from this example is fixed to be 56.31 dB, at 2.196 s, as
shown below:

Figure 19: The starting point of determined linear decay line in 4000 Hz from the
example measurement.

3.4.3 Fix the ending point of linear decay

Afterwards, the lowest point from maximum SPL point and the end of array is fixed.
As shown below, it is 34.81 dB, at 4.039 s.

Figure 20: The lowest SPL point in 4000 Hz from the example measurement.

35

Then searched from the lowest point to the determined starting point, the point whose
gap in SPL is the closest to 12 dB from the lowest point is fixed as the ending point of
the determined linear decay line. The reason why the threshold value is taken to be
twelve instead of twenty as described in standards is for the consideration that the
sound impulse for this app is the normal forms of impulse in daily life, such as hand
clapping, and sometimes they can not be as loud as the impulse generated by the
specific equipment in professional acoustic testing rooms, which means that if this
‘headroom’ value is set too large, the ending point will be wrongly determined too
close to the determined starting point, even sometimes above the determined starting
point in the algorithm of this app, which is obviously wrong. Also according to the
testing experience during developing process, it was found that will this value being
12 dB, the determined ending point is more likely to be close to the true ending point,
describing the linear decay process better. Another principle added in the algorithm to
avoid the situation that the determined starting point and ending point are too close to
each other is that if the difference of SPL values between the determined starting
point of decay and the ending point fixed by 12 dB on the lowest point is less than 10
dB, which also means the determined decay process is too short to be typical, the end
point will be determined again by 8 dB on the lowest SPL. Both of the value of 12 dB
and 8 dB is carefully selected based on the huge number of testing results and are
considered to be most suitable for this app. The ending point in the example
measurement is finally fixed at 42.21 dB, at 2.314 s, 8 dB larger than the lowest value
in the example measurement as showed below:

Figure 21: The ending point of determined linear decay line in 4000 Hz from the
example measurement.

36

3.4.4 Calculate RT60 results

So far, both of the determined starting points and ending points have been fixed. The
final step in calculation is to use the slope of the connection line between the
estimated starting point and estimated ending point of linear decay process to get
RT60 value. The formula and result are shown below:

Equation 8: Calculation formula of RT60 (with slope) in this project.

The reason for using the slope to calculate RT60 instead of directly calculate the time
difference of -20 dB is that this app is designed to ordinary clap measuring, not the
professional high pitch equipment , the SPL of clap is sometimes not loud enough as
the situation shown in the standards and the difference of SPL in linear decay process
is often less than 20 dB. Trying to ensure measurement accuracy, we decide to use the
slope between estimated starting point and ending point of the linear decay process to
calculate RT60.

37

Chapter 4 Data Comparison

This chapter mainly makes a data comparison between app runs at different android
phones and precision instrument named Nor140. At first we need to point out that
when we come across some RT60 that is not so close to the official data unfortunately,
we have to repeat the measurement again. The reason is that there are many
limitations while measuring: such as phone hardware limitations (microphone,
loudspeaker etc.), different sound press level with different gesture of hands clapping,
noise (environmental noise, white & pink noise etc.) and so on. These limitations are
also working on Nor140 but less than Android phones.

4.1 Nor140

Norwegian company Norsonic, founded in 1967, is one of the word’s leading
manufactures of high quality acoustic and vibration measuring equipment. And
Nor140 noise monitoring system has the advantage of simple operation, easy to use
and large dynamic range. The minimum resolution of the SPL versus time analysis of
Nor140 sound level meter is 50 milliseconds. From 1/1 or 1/3 octave band analysis in
the range of 0.4Hz to 20KHz and 9.6KHz FFT analysis can be achieved, ICP type
vibration sensor is directly connected to the vibration signal. It suits ISO 10052, ISO
140, ISO 717 standard building acoustic measurement, and compiles with IEC and
ANSI level 1 sound level meter [17].
In the following measurements, Nor140 has been calibrated before measurements.

Figure 22: Nor140.

38

4.2 RT60 comparison

We made a RT60 data comparison between two android phone(Samsung Galaxy S7,
Huawei Mate9 Pro), one android virtual phone with Nor140 in two rooms(Specific
RT60 measurement room, normal bedroom).

4.2.1 Measurement rooms

We chose two rooms as our RT60 measurement room, one was specially designed
with huge number of tiles covering the wall around it for great reverberation effect. It
is located in the basement of V-building of Lund University and it is also the
receiving room of a step-sound insulation lab at the same time. Another room for
test was a bedroom in an ordinary house. Here are the figures for these two rooms.

Figure 23: Specific RT60 measurement room.

From figure 18 we can see that ceramic tiles are all cover on the room walls, so the
average sound absorption coefficient is very low and the size of this room is
5.1×5.8×3.2. According to Sabine formula mentioned before, RT60=0.161×V/(S×a),
so there will be a longer RT60 in this room and it is a good place to test, we assume it
as room 1.

39

Figure 24: Normal bedroom.

Figure 19 shows a normal bedroom and the size of it is 2.5×3.5×2, which makes the
speaker’s clarity into consideration, the sound absorption coefficient of this room
should be high enough. What’s more, there are many objects in this room so
absorption coefficient will be higher. But we can also test RT60 and check how is
going on about this value, and we assume this room as room 2.

4.2.2 RT60 for two rooms by Nor140

Here is the result that we measured 6 times(2×3) in each room by Nor140.

Nor140 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 1.44 1.89 2.27 1.95 1.6 1.15
NO.2 1.31 1.54 2.17 1.77 1.39 1.14
NO.3 1.6 2.01 2.11 1.64 1.49 1.03
NO.4 1.5 1.88 2 1.8 1.3 1.03
NO.5 1.2 1.45 2.43 1.87 1.52 1.06
NO.6 2.74 1.93 2.45 1.82 1.57 1.04
Mean 1.632 1.783 2.238 1.808 1.478 1.075

StdDev. 0.561 0.230 0.179 0.095 0.114 0.055
Table 4: RT60 for Room 1 by Nor140.

40

Figure 25: RT60 comparison in Room 1 by Nor140.

Table 5: RT60 for Room 2 by Nor140.

Nor140 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz
NO.1 0.52 0.41 0.41 0.31 0.31 0.34
NO.2 0.3 0.31 0.44 0.31 0.34 0.34
NO.3 0.52 0.43 0.45 0.64 0.41 0.38
NO.4 0.47 0.37 0.44 0.4 0.42 0.36
NO.5 0.52 0.41 0.44 0.3 0.37 0.33
NO.6 0.5 0.42 0.39 0.34 0.37 0.35
Mean 0.472 0.392 0.428 0.383 0.37 0.35
StdDev. 0.086 0.045 0.023 0.131 0.041 0.018

41

Figure 26: RT60 comparison in Room 2 by Nor140.

From these two figures we can find out that the RT60 value of room 1 is much higher
than that of room 2 and higher RT60 value definitely means longer echo period. On
the other hand, it presents how important about building acoustic design.

4.2.3 RT60 for two rooms by virtual phone on laptop

Android virtual phone is created by Android studio coding system, it has all functions
as the normal cellphone. Virtual phone is a good sample for programmers debug and
test APP. In the virtual phone, our app is runned and the teast results of each room are
showed as following:

Virtual
phone 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 1.91 1.698 2.072 1.747 1.56 0.847
NO.2 1.161 1.999 2.556 1.847 1.108 1.121
NO.3 2.094 2.045 1.909 1.748 1.059 1.368
NO.4 1.923 2.101 1.785 1.708 1.738 1.187
NO.5 2.015 1.327 2.076 1.672 1.849 1.264
NO.6 1.772 1.841 2.086 1.323 1.506 1.617
Mean 1.813 1.835 2.081 1.674 1.47 1.234
StdDev. 0.337 0.289 0.262 0.182 0.324 0.257

Table 6: RT60 for Room 1 by Virtual phone.

42

Figure 27: RT60 comparison in Room 1 by Virtual phone.

Virtual
phone 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 0.502 0.456 0.442 0.304 0.333 0.401
NO.2 0.373 0.453 0.39 0.431 0.343 0.28
NO.3 0.402 0.394 0.353 0.384 0.343 0.393
NO.4 0.443 0.343 0.421 0.363 0.374 0.321
NO.5 0.344 0.444 0.445 0.314 0.372 0.3
NO.6 0.382 0.385 0.453 0.405 0.345 0.383
Mean 0.408 0.413 0.417 0.367 0.352 0.346
StdDev. 0.057 0.046 0.039 0.050 0.017 0.052

Table 7: RT60 for Room 2 by Virtual phone.

43

Figure 28: RT60 comparison in Room 2 by Virtual phone.

Compared with Nor140, the RT60 value we got by virtual phone is slightly different
and this difference in result is acceptable.

4.2.4 RT60 for two rooms by two android phones

We tested other two different Android phones (Samsung Galaxy S7, Huawei Mate9
Pro) in order to confirm that our app works well.

Samsung
Galaxy
S7

125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 1.546 1.427 2.065 1.645 1.496 1.109
NO.2 1.474 1.395 1.661 1.801 1.74 1.063
NO.3 1.558 1.353 1.914 1.422 1.596 1.04
NO.4 1.753 1.467 1.916 1.886 1.64 0.963
NO.5 1.588 1.323 1.637 1.694 1.87 0.829
NO.6 1.716 1.565 1.891 1.531 1.379 0.786
Mean 1.606 1.422 1.847 1.663 1.620 0.965
StdDev. 0.107 0.087 0.166 0.170 0.174 0.131

Table 8: RT60 for Room 1 by Samsung.

44

Figure 29: RT60 comparison in Room 1 by Samsung.

Table 9: RT60 for Room 2 by Samsung.

Figure 30: RT60 comparison in Room 2 by Samsung.

Samsung
Galaxy
S7

125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 0.5 0.45 0.43 0.373 0.334 0.381

NO.2 0.432 0.382 0.388 0.333 0.323 0.354

NO.3 0.399 0.389 0.448 0.315 0.294 0.383

NO.4 0.447 0.379 0.455 0.339 0.301 0.293

NO.5 0.412 0.412 0.375 0.328 0.321 0.324

NO.6 0.384 0.424 0.462 0.415 0.358 0.372

Mean 0.429 0.406 0.426 0.351 0.322 0.351

StdDev. 0.041 0.028 0.037 0.037 0.023 0.036

45

As the result by Samsung phone measuring, mean value of RT60 is also slightly
difference with NOR140, and the standard deviation is not so large. Now let us look
at how the app runs by Huawei.

Huawei
Mate9
Pro

125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 1.883 1.921 1.933 1.729 1.811 0.795
NO.2 1.998 2.009 1.789 1.817 1.387 1.384
NO.3 1.748 1.752 1.933 1.952 1.526 0.898
NO.4 1.961 1.981 2.192 1.842 1.595 0.998
NO.5 2.086 1.953 2.247 1.582 1.437 1.239
NO.6 2.165 1.865 1.856 1.621 1.685 0.945
Mean 1.974 1.914 1.992 1.757 1.574 1.043
StdDev. 0.148 0.094 0.185 0.144 0.158 0.223

Table 10: RT60 for Room 1 by Huawei.

Figure 31: RT60 comparison in Room 1 by Huawei.

46

Huawei
Mate9
Pro

125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz

NO.1 0.399 0.412 0.418 0.41 0.39 0.374
NO.2 0.379 0.432 0.472 0.423 0.373 0.33
NO.3 0.485 0.375 0.352 0.351 0.427 0.364
NO.4 0.477 0.335 0.394 0.372 0.445 0.392
NO.5 0.386 0.451 0.427 0.401 0.388 0.402
NO.6 0.453 0.377 0.396 0.414 0.369 0.36
Mean 0.430 0.397 0.410 0.395 0.399 0.370
StdDev. 0.047 0.043 0.040 0.028 0.030 0.026

Table 11: RT60 for Room 2 by Huawei.

Figure 32: RT60 comparison in Room 2 by Huawei.

Comparing these results, it can be easily found out that the measurement results at
same test rooms for different Android phone are different. The main reasons causing
this phenomenon are external factors such as hardware and noise as we have
discussed, and another very important factor is the difference of every time’s hands
clapping such as guesture and strength.

47

4.3 Comparison by each test equipment in each room

Now let us combine all the mean RT60 values of these equipment in each room to
verify our app works fine.

Figure 33: Comparison about mean RT60 by each equipment in room 1.

Figure 34: Comparison about mean RT60 by each equipment in room 2.

We think we have tried our best to reduce the external influences and the app in each
phone works fine from figure 28 and 29.

48

Figure 35: Comparison about standard deviation in room 1.

Figure 36: Comparison about standard deviation in room 2.

Figure 35 and 36 show the comparison about standard deviation by each equipment in
each room. We think the standard deviation is good and our app goes well. However
as all the effect factors mentioned before, the results of our app can not be one
hundred per cent accurate. Sometimes too high or too low RT60 results occur in
certain Octave Bands in one group of results and it is advised to skip the inaccurate
data group and repeat the measurement one more time again.

49

4.4 Inaccuracy analysis

Unfortunately, according to the experience of our huge number of tests, the results are
inaccurate sometimes, just as shown in the figure below, this one is tested in the
Room 1 (reverberation basement):

Figure 37: An example of an inaccurate test.

It can be easily detected from the group of results above that except for the result for
250Hz, all the other five results are obviously too small compared with the standard
data from NOR140.

More groups of inaccurate test results from Room 1 (reverberation basement) in our
testing process are shown in the table below:

50

125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz
NO.1 1.565 1.365 1.456 0.921 0.745 0.685
NO.2 1.753 1.367 1.416 1.066 0.64 0.63
NO.3 1.546 1.327 1.565 1.445 1.496 1.079
NO.4 1.328 1.352 1.533 1.252 0.526 0.898
NO.5 2.988 2.609 1.789 0.817 1.387 1.984

Table 12: Groups of inaccurate data in Room 1.

To give a more visible comparison of these inaccurate above, a line chart is made,
showing all the inaccurate data above and including the standard result of NOR140:

Figure 38: Comparison between inaccurate data and standard data.

As can be observed, in some groups of inaccurate data, the overall trend of data from
125Hz to 4000Hz is rough the same as the standard one but all the six results are
generally inaccurate. For example, the data of Group 1 and Group 2 in the table above,
all the six results are slightly smaller than the standard values but the overall trend of
the data from 125Hz to 4000Hz is similar to that of standard results. The reason
results in this phenomenon is that the conditions of impulse in these inaccurate
measurements are different from that for the standard one. For example, the
hand-clapping, if the strength to generate it is more powerful, the time for
reverberation is longer and the RT60 results are larger, on the other hand, if the
strength is more tiny than the strength of the clapping in the standard test, the RT60
results will all be a little bit smaller than the standard results but the overall trend of
data will be similar, just as Group 1 and Group 2 show.

In some other tests with only one or some inaccurate results, just as the data in Group
3 and Group 4 above show, the result for 2000Hz is too larger than the standard one in

51

Group 3 and the result for 2000Hz is too smaller than the standard one in Group 4 but
all the other five results are similar with the standard ones. The reason for this
phenomenon is the calculation of RT60 with the algorithm introduced in Chapter 3
going wrong. For example, if one or both of the determined starting point and end
point that fix the slope is chosen improperly, the RT60 will definitely be affected. In
addition, this kind of inaccuracy can also be caused by the error in recording process
and the calculation of SPL. In the development and test process, according to what we
checked, some of the SPL values in the group of SPL-Time data are inaccurate in
some measurements and if the algorithm use these groups of data with wrong SPL
values, the RT60 results for those Octave Bands will also be affected possibly.

Also, if both of the error conditions introduced above happen as the same time, more
inaccurate results are gotten, just as the Group 5 above shows. To sum up, at the
present stage, the algorithm in this app is still too simple and unstable compared with
the professional equipment to give the test SPL and calculate RT60 100% accurately
and this is a big issue to be improved in the future.

52

Chapter 5 Discussion

Here it is a discussion about the comparison of all results got in Chapter 4.

Figure 28 and figure 29 show the comparison about mean RT60 by each
equipment(Nor140, Virtual phone, Samsung Galaxy S7, Huawei Mate9 pro) in room
1 and room 2, it is clear to see the value of RT60 in room 1 is larger than room 2 in
each Octave Band. It can found out that the larger the room volume and smaller
average sound absorption coefficient of room surface, the longer RT60 will be. This
result also suits Sabine Formula.

We compare RT60 in one room by the same equipment and find out the result is
different in each test, the reason is we can not strictly keep the condition of sound
source(hand clapping) of every measurement to be same. Further, environmental
factors such as noise play an important role in making this difference.

Because Nor140 has a higher accuracy measurement level as we have introduced in
chapter 4.1, the data it measured is regarded as ideal ones. We compare the results that
NOR140 measured in room 1(Table 3) with other three equipment(Table 5,7,9), it is
found out the result is different because each equipment has different hardware(also
works in room 2). What’s more, the results measured in two rooms by virtual phone
are more closed to the ideal results of Nor140, the reason we think is that laptop has a
better hardware such as microphone and loudspeaker compare to other two android
phones.

After all, the standard deviation by each Android phone measured is relatively small ,
and RT60 is also closed to Nor140 measured. We think we have tried our best to
reduce the external influences and it is a perfect app so far.

53

Chapter 6 Conclusion

Our thesis project is to build an app that works for measuring RT60 by Android phone,
based on applying the theoretical RT60 measurement thoughts to Java codes to the
greatest extent, some improvements are also applied to our own Java algorithm, such
as noise suppression in the recording process. With this app, measuring RT60
becomes easier and quicker, users are allowed to measure simply with their Android
phones.

Beside the acoustic background knowledge, some theories in wireless communication
are also used in the algorithm of this app such as FFT/IFFT, sampling theory,
frequency spectrum resolution, linear interpolation and so on.

In addition, several practicable functions are built in this app. Setting the number of
locations where the impulse is generated and received and taking the average result of
several measurements decreases the influence of inaccurate measurement results,
reflecting the acoustic condition of tested rooms better. Drawing line chart of
measurement results function gives users a clearer view about the level and trends of
RT60 results at each target Octave Bands. Exporting measurement results function
allows users to store test results and ensures them a more convenient further use of all
the data. Setting detailed test room information and taking picture functions help
describe testing environment better.

However, the measurement accuracy of this app is limited by some factors, one of
them is the gap between Android devices and professional acoustic equipment, both
on hardware and algorithm. It has to be admitted that so far the algorithm of this app
is still too simple, unstable and inflexible to get accurate measurement results 100%
and solve all kinds of testing environment, as well as different impulse conditions.
This shortage can be detected in the data comparison section of this theory and also
found during our whole testing experience. When we were in the developing process,
the greatest efforts were put on solving this issue and it is also an important work for
the future. When it comes to one or more obviously wrong measurement results, users
are strongly recommended to give up that group of data and restart a new test at the
same location, that is the reason why the function of ‘Measure Again’ is added in this
app.

To sum up, the testing results of this app are close to the standard results gotten from
professional acoustic equipment sometimes but can not be as stable and accurate as
them.So the results from this app are more suitable to be a reference of our acoustic
measurement and for the more accurate and detailed measurement results,
professional acoustic equipment are sometimes better options.

54

Chapter 7 Future Work

Some further improvements to be applied to our work are listed as following.

Firstly, the function of scanning the test room with sound and extracting the
information that has been calculated to build 3D model of the test room is to be
applied, extending the app to do building acoustics insulation (airborne and step
sound) measurements, which will be very helpful to architectural acoustics for
designer.

Secondly, Java coding still needs to be optimized to decrease the influence of noise
further and provide more stable and accurate measurement results.

Thirdly, a data base is needed in this app, which can store all the measurement results
in this app even if users have completely closed the it. Database can make the use of
this app more convenient for users.

Last but not least, beautify the operation interface to provide users with a better use
experience.

55

Reference

[1] Ljunggren, F. and A. Ågren, Potential solutions to improved sound performance of
volume based lightweight multi-storey timber buildings. Applied Acoustics, 2011.
72(4): p. 231-240.
[2] Flodén, O., et al., The effect of modelling acoustic media in cavities of lightweight
buildings on the transmission of structural vibrations. Engineering Structures, 2015.
83(Supplement C): p. 7-16.
[3] Negreira, J., A. Sjöström, and D. Bard, Low frequency vibroacoustic investigation
of wooden T-junctions.Applied Acoustics, 2016. 105(Supplement C): p. 1-12.
[4] XiaoMin Li &Haitao Sun. (2015). Introduction of Reverberation Time and
Measurement Method. Available at:
http://www.sosoas.com/new_content.php?id=59976
[5] Available at: http://www.animations.physics.unsw.edu.au/jw/dB.htm
[6] Yichuan Zhang. (2008). Reverberation Time Introduction. Available at:
https://wenku.baidu.com/view/87e40fecaeaad1f346933f3c.html
[7] IOS 3382-1. (2009). Acoustics - Measurement of RoomAcoustic Parameters
[8] Carl Hopkins. (2007). Sound Insulation
[9] Tor Erik Vigran. (2008). Building acoustics
[10] Available at: https://en.wikipedia.org/wiki/Reverberation
[11] Available at: https://en.wikipedia.org/wiki/Fast_Fourier_transform#cite_ref-1
[12] Henzi Shen. (2016). Standard about FFT. Available at:
https://blog.csdn.net/shenziheng1/article/details/52891807
[13] Available at: https://wenku.baidu.com/view/156305d384254b35eefd346a.htm
[14] Available at: https://en.wikipedia.org/wiki/Octave_band
[15] Available at: https://www.castlegroup.co.uk/guidance/octave-bands/
[16] Available at: https://en.wikipedia.org/wiki/Noise
[17] Instruction Manual of NOR140. Available at:
https://nor140.files.wordpress.com/2016/09/nor-140-instruction-manual-v3r0.pdf

http://www.sosoas.com/new_content.php?id=59976
http://www.animations.physics.unsw.edu.au/jw/dB.htm
https://wenku.baidu.com/view/87e40fecaeaad1f346933f3c.html
https://en.wikipedia.org/wiki/Reverberation
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://blog.csdn.net/shenziheng1/article/details/52891807
https://en.wikipedia.org/wiki/Octave_band
https://www.castlegroup.co.uk/guidance/octave-bands/
https://nor140.files.wordpress.com/2016/09/nor-140-instruction-manual-v3r0.pdf

56

Appendix

Recording

public class AudioRecorder {

private static AudioRecorder audioRecorder;

private final static int AUDIO_INPUT =

MediaRecorder.AudioSource.VOICE_COMMUNICATION ;

private final static int AUDIO_SAMPLE_RATE = 44100;

private final static int AUDIO_CHANNEL = AudioFormat.CHANNEL_IN_MONO;

private final static int AUDIO_ENCODING = AudioFormat.ENCODING_PCM_16BIT;

private int bufferSizeInBytes = 0;

private AudioRecord audioRecord;

private Status status = Status.STATUS_NO_READY;

private String fileName;

private List<String> filesName = new ArrayList<>();

private AudioRecorder() {

}

public static AudioRecorder getInstance() {

if (audioRecorder == null) {

audioRecorder = new AudioRecorder();

}

return audioRecorder;

}

public void createDefaultAudio(String fileName) {

bufferSizeInBytes = AudioRecord.getMinBufferSize(AUDIO_SAMPLE_RATE,

AUDIO_CHANNEL, AUDIO_ENCODING);

audioRecord = new AudioRecord(AUDIO_INPUT, AUDIO_SAMPLE_RATE,

AUDIO_CHANNEL, AUDIO_ENCODING, bufferSizeInBytes);

this.fileName = fileName;

status = Status.STATUS_READY;

}

public void startRecord(final RecordStreamListener listener) {

if (status == Status.STATUS_NO_READY || TextUtils.isEmpty(fileName)) {

throw new IllegalStateException("Recording hasn’t been initialized,

check recording permission. ");

}

if (status == Status.STATUS_START) {

throw new IllegalStateException("Recording...");

}

Log.d("AudioRecorder","===startRecord==="+audioRecord.getState());

57

audioRecord.startRecording();

new Thread(new Runnable() {

@Override

public void run() {

writeDataTOFile(listener);

}

}).start();

}

public void stopRecord() {

Log.d("AudioRecorder","===stopRecord===");

if (status == Status.STATUS_NO_READY || status == Status.STATUS_READY) {

throw new IllegalStateException("Recording hasn’t begun.");

} else {

audioRecord.stop();

status = Status.STATUS_STOP;

release();

}

}

}

58

IFFT

public class IFFT {

int n, m;

double[] cos;

double[] sin;

double[] window;

public IFFT(int n) {

this.n = n;

this.m = (int) (Math.log(n) / Math.log(2));

if (n != (1 << m))

throw new RuntimeException("FFT length must be power of 2");

cos = new double[n / 2];

sin = new double[n / 2];

for (int i = 0; i < n / 2; i++) {

cos[i] = Math.cos(2 * Math.PI * i / n);

sin[i] = Math.sin(2 * Math.PI * i / n);

}

makeWindow();

}

protected void makeWindow() {

window = new double[n];

for (int i = 0; i < window.length; i++)

window[i] = 0.42 - 0.5 * Math.cos(2 * Math.PI * i / (n - 1))

+ 0.08 * Math.cos(4 * Math.PI * i / (n - 1));

}

public double[] getWindow() {

return window;

}

public void ifft(double[] x, double[] y) {

int i, j, k, n1, n2, a;

double c, s, e, t1, t2;

j = 0;

n2 = n / 2;

for (i = 1; i < n - 1; i++) {

n1 = n2;

while (j >= n1) {

j = j - n1;

n1 = n1 / 2;

}

j = j + n1;

if (i < j) {

t1 = x[i];

59

x[i] = x[j];

x[j] = t1;

t1 = y[i];

y[i] = y[j];

y[j] = t1;

}

}

n1 = 0;

n2 = 1;

for (i = 0; i < m; i++) {

n1 = n2;

n2 = n2 + n2;

a = 0;

for (j = 0; j < n1; j++) {

c = cos[a];

s = sin[a];

a += 1 << (m - i - 1);

for (k = j; k < n; k = k + n2) {

t1 = c * x[k + n1] - s * y[k + n1];

t2 = s * x[k + n1] + c * y[k + n1];

x[k + n1] = x[k] - t1;

y[k + n1] = y[k] - t2;

x[k] = x[k] + t1;

y[k] = y[k] + t2;

}

}

}

}

}

60

FFT

public class FFT {

int n, m;

double[] cos;

double[] sin;

double[] window;

public FFT(int n) {

this.n = n;

this.m = (int) (Math.log(n) / Math.log(2));

if (n != (1 << m))

throw new RuntimeException("FFT length must be power of 2");

cos = new double[n / 2];

sin = new double[n / 2];

for (int i = 0; i < n / 2; i++) {

cos[i] = Math.cos(-2 * Math.PI * i / n);

sin[i] = Math.sin(-2 * Math.PI * i / n);

}

makeWindow();

}

protected void makeWindow() {

window = new double[n];

for (int i = 0; i < window.length; i++)

window[i] = 0.42 - 0.5 * Math.cos(2 * Math.PI * i / (n - 1))

+ 0.08 * Math.cos(4 * Math.PI * i / (n - 1));

}

public double[] getWindow() {

return window;

}

public void fft(double[] x, double[] y) {

int i, j, k, n1, n2, a;

double c, s, e, t1, t2;

j = 0;

n2 = n / 2;

for (i = 1; i < n - 1; i++) {

n1 = n2;

while (j >= n1) {

j = j - n1;

n1 = n1 / 2;

}

j = j + n1;

if (i < j) {

t1 = x[i];

61

x[i] = x[j];

x[j] = t1;

t1 = y[i];

y[i] = y[j];

y[j] = t1;

}

}

n1 = 0;

n2 = 1;

for (i = 0; i < m; i++) {

n1 = n2;

n2 = n2 + n2;

a = 0;

for (j = 0; j < n1; j++) {

c = cos[a];

s = sin[a];

a += 1 << (m - i - 1);

for (k = j; k < n; k = k + n2) {

t1 = c * x[k + n1] - s * y[k + n1];

t2 = s * x[k + n1] + c * y[k + n1];

x[k + n1] = x[k] - t1;

y[k + n1] = y[k] - t2;

x[k] = x[k] + t1;

y[k] = y[k] + t2;

}

}

}

}

}

62

Analyze

mVisualizer.setDataCaptureListener(new Visualizer.OnDataCaptureListener() {

@Override

public void onWaveFormDataCapture(Visualizer visualizer, byte[] waveform, int

samplingRate) {

}

@Override

public void onFftDataCapture(Visualizer visualizer, byte[] fft, int

sampling_rate) {

//1。IFFT

double fft1r[] = new double[512];

double fft1i[] = new double[512];

double ifft1r_zero[] = new double[32768];

double ifft1i_zero[] = new double[32768];

double fft2[] = new double[ifft1i_zero.length * 2];

byte fft2_byte[] = new byte[fft2.length];

for (int i = 0; i < 512; i++) {

fft1r[i] = fft[i * 2];

fft1i[i] = fft[2 * i + 1];

}

IFFT ifft_My = new IFFT(512);

IFFT.beforeAfter(ifft_My, fft1r, fft1i);

for (int i = 0; i < fft1r.length; i++) {

fft1r[i] = fft1r[i] / 512;

fft1i[i] = fft1i[i] / 512;

}

for (int i = 0; i < fft1r.length; i++) {

ifft1r_zero[i] = fft1r[i];

ifft1i_zero[i] = fft1i[i];

}

//add zeros

for (int i = fft1r.length; i < ifft1r_zero.length; i++) {

ifft1r_zero[i] = 0;

ifft1i_zero[i] = 0;

}

//fft again

Fff fft_My = new Fff(ifft1r_zero.length);

Fff.beforeAfter(fft_My, ifft1r_zero, ifft1i_zero);

//Im Re cross

for (int i = 0; i < ifft1r_zero.length; i++) {

fft2[2 * i] = ifft1r_zero[i];

fft2[2 * i + 1] = ifft1i_zero[i];

63

}

//double2byte

for (int i = 0; i < fft2.length; i++) {

fft2_byte[i] = (byte) fft2[i];

}

updateVisualizer(fft2_byte, sampling_rate / 1000,

mMediaPlayer.getCurrentPosition());

}

}, mVisualizer.getMaxCaptureRate(), false, true);

mVisualizer.setEnabled(true);

public void updateVisualizer(byte[] fft, int fs, int playTime) {

byte[] fftdata125 = new byte[130];

byte[] fftdata250 = new byte[264];

byte[] fftdata500 = new byte[512];

byte[] fftdata1000 = new byte[1052];

byte[] fftdata2000 = new byte[2098];

byte[] fftdata4000 = new byte[4200];

for (int i = 132; i < 262; i++) {

fftdata125[i - 132] = fft[i];

}

double recordBeanList12 = doublecalculateVolume(fftdata125);

for (int i = 262; i < 526; i++) {

fftdata250[i - 262] = fft[i];

}

double recordBeanList22 = doublecalculateVolume(fftdata250);

for (int i = 526; i < 1038; i++) {

fftdata500[i - 526] = fft[i];

}

double recordBeanList32 = doublecalculateVolume(fftdata500);

for (int i = 1052; i < 2104; i++) {

fftdata1000[i - 1052] = fft[i];

}

double recordBeanList42 = doublecalculateVolume(fftdata1000);

for (int i = 2104; i < 4202; i++) {

fftdata2000[i - 2104] = fft[i];

}

double recordBeanList52 = doublecalculateVolume(fftdata2000);

64

for (int i = 4202; i < 8402; i++) {

fftdata4000[i - 4202] = fft[i];

}

double recordBeanList62 = doublecalculateVolume(fftdata4000);

double db_125 = recordBeanList12;

mRecordBeans_125.add(new RecordBean(db_125, playTime, 125));

double db_250 = recordBeanList22;

mRecordBeans_250.add(new RecordBean(db_250, playTime, 250));

double db_500 = recordBeanList32;

mRecordBeans_500.add(new RecordBean(db_500, playTime, 500));

double db_1000 = recordBeanList42;

mRecordBeans_1000.add(new RecordBean(db_1000, playTime, 1000));

double db_2000 = recordBeanList52;

mRecordBeans_2000.add(new RecordBean(db_2000, playTime, 2000));

double db_4000 = recordBeanList62;

mRecordBeans_4000.add(new RecordBean(db_4000, playTime, 4000));

}

private double calcRT60forLowFreq(List<RecordBean> listbean, int a, double b)

{ Log.d("Here", "lp = " +listbean .get(a).lp +" "+listbean .get(a).time);

double slope_new =0;

double RT20 = 0;

int number=0;

int start_for_high=0;

int end_for_high=0;

double RT60 = 0;

int start=0;

int larger[]=new int [listbean .size()];

int true_start=0;

int end=0;

double end_time=0;

double end_lp=0;

double lp_final[]=new double [listbean .size() *50];

double time_final[]=new double [listbean .size() *50];

if ((a-5)<=40){

start_for_high =40;

}

else {start_for_high =(a-5);}

double max = listbean.get(0).lp;

65

for(int i=0;i<listbean .size() ;i++){

if (listbean .get(i).time>b){

end_for_high =i;

break;

}

}

Log.d("Here 2", "lp = " +b +" "+listbean .get(end_for_high).lp);

for (int i = start_for_high ; i < end_for_high ; i++) {

if (max < listbean.get(i).lp) {

max = listbean.get(i).lp;

start = i;

}

}

Log.d("max point", "lp = " +max);

Log.d("max point", "time = " +listbean .get(start).time);

for (int i=1;i <listbean .size()-1 ;i++){

if (listbean .get(i).lp==Double.NEGATIVE_INFINITY){

if (listbean .get(i+1).lp==Double.NEGATIVE_INFINITY){

for (int j=i+1;j<listbean .size() ;j++)

{

if (listbean.get(j).lp!=Double .NEGATIVE_INFINITY){

double lp[]

=interpolate(listbean.get(i-1).lp,listbean.get(j).lp,j-i+1) ;

for(int q=0;q<lp.length;q++){

for(int p=1;p<lp.length ;p++){

listbean .get(i+p-1) .lp=lp[p];

}

}

break;

}

}}

else if (listbean .get(i+1).lp!=Double .NEGATIVE_INFINITY){

listbean .get(i).lp=(listbean .get(i-1).lp+listbean .get(i+1).lp)/2;

}

}

}

for(int j=0;j<2;j++) {

for (int i = 1; i < listbean.size() - 1; i++) {

if (listbean.get(i - 1).lp > listbean.get(i).lp && listbean.get(i +

1).lp > listbean.get(i).lp) {

listbean.get(i).lp = (listbean.get(i - 1).lp + listbean.get(i +

1).lp) / 2;

}

}

66

}

for (int i=0 ;i<listbean .size() ;i++){

Log.d("all new", "lp = " +listbean .get(i) .lp +"

"+listbean .get(i).time);

}

for(int i=start+1;i<end_for_high;i++){

if(max -listbean .get(i).lp<7){

true_start =i;

number=number +1;

}

}

if (number==0){

if(max -listbean .get(start+1).lp>7){

true_start =start ;}

else{true_start =start+1;}

}

if (listbean.get(true_start).lp-listbean.get(true_start +1).lp<4){

for (int i=true_start ;i<end_for_high ;i++) {

if (listbean.get(true_start).lp - listbean.get(i).lp < 4) {

true_start = i;

}

}

}

Log.d("How many", "true start 1 = " + number+" "

+listbean .get(true_start).lp +" "+listbean .get(true_start).time);

for (int i=true_start;i<listbean .size()-1;i++){

double lp[] =interpolate(listbean.get(i).lp,listbean.get(i+1).lp,51) ;

double time[]

=interpolate(listbean.get(i).time ,listbean.get(i+1).time,51) ;

for (int j=0 ;j<lp .length ;j++){

lp_final[(i-true_start)*51+j]=lp [j];

time_final[(i-true_start)*51+j]=time[j];

}

}

double lowest_time=listbean.get(start).time;

double lowest_lp=max;

int lowest=0;

for (int i=start ;i< listbean.size() ;i++){

if(listbean .get(i).lp<lowest_lp && listbean .get(i).lp>30){

lowest_lp =listbean .get(i).lp;

lowest_time=listbean .get(i).time;

lowest=i;

}

}

67

Log.d("lowest point", "lp = " +lowest_lp);

Log.d("lowest point", "time = " +lowest_time);

for (int i=0;i<lp_final.length ;i++){

if(lp_final [i]<lowest_lp +12){

end =i;

end_lp=lp_final [i];

end_time =time_final [i];

if(Math.abs(end_lp-listbean .get(true_start).lp)<10){

for (int j=0;j<lp_final.length ;j++){

if(lp_final [j]<lowest_lp +8){

end =j;

end_lp=lp_final [j];

end_time =time_final [j];

break;

}

}

}

break;

}

}

Log.d("end point", "lp = " +end_lp);

Log.d("end point", "time = " +end_time);

if(end_lp ==listbean .get(true_start).lp){

slope_new =Double .POSITIVE_INFINITY ;

}

else{

slope_new =(lp_final

[end]-listbean .get(true_start).lp)/(listbean .get(true_start).time

-time_final [end]);}

Log.d("slope", "slope new = " +slope_new);

RT20 = 20/slope_new;

Log.d("calcRT30", "RT60===" +listbean .get(listbean .size()-1).time);

RT60 = RT20 * 3*5000/(1000*listbean .get(listbean .size() -1).time);

Log.d("calcRT30", "RT60===" + RT60);

DecimalFormat df = new DecimalFormat("0.000");

RT60=Double.parseDouble(df.format(RT60));

return RT60 * 1.0;

}

private double calcRT60(List<RecordBean> listbean) {

double slope_new =0;

double RT20 = 0;

int number=0;

double RT60 = 0;

68

int true_start=0;

int end=0;

int larger[]=new int [listbean .size()];

double end_time=0;

double end_lp=0;

double lp_final[]=new double [listbean.size()*50];

double time_final[]=new double [listbean.size()*50];

int start = findMaxIndex(listbean) ;

start_point =start;

start_time =listbean.get(start).time ;

double max = listbean.get(start).lp;

Log.d("max point", "lp = " +max);

Log.d("max point", "time = " +listbean .get(start).time);

for (int i=1;i <listbean .size()-1 ;i++){

if (listbean .get(i).lp==Double.NEGATIVE_INFINITY){

if (listbean .get(i+1).lp==Double.NEGATIVE_INFINITY){

for (int j=i;j<listbean .size() ;j++)

{

if (listbean.get(j).lp!=Double .NEGATIVE_INFINITY){

double lp[]

=interpolate(listbean.get(i-1).lp,listbean.get(j).lp,j-i+1) ;

for(int q=0;q<lp.length;q++){

for(int p=1;p<lp.length ;p++){

listbean .get(i+p-1) .lp=lp[p];

}

}

break;

}

}}

else if (listbean .get(i+1).lp!=Double .NEGATIVE_INFINITY){

listbean .get(i).lp=(listbean .get(i-1).lp+listbean .get(i+1).lp)/2;

}

}

}

for(int j=0;j<2;j++) {

for (int i = 1; i < listbean.size() - 1; i++) {

if (listbean.get(i - 1).lp > listbean.get(i).lp && listbean.get(i +

1).lp > listbean.get(i).lp) {

listbean.get(i).lp = (listbean.get(i - 1).lp + listbean.get(i +

1).lp) / 2;

}

}

69

}

for (int i=0 ;i<listbean .size() ;i++){

Log.d("all new", "lp = " +listbean .get(i) .lp +"

"+listbean .get(i).time);

}

for(int i=start+1;i<listbean .size() ;i++){

if(max -listbean .get(i).lp<7){

true_start =i;

number=number +1;

}

}

if (number==0){

if(max -listbean .get(start+1).lp>7){

true_start =start ;}

else{true_start =start+1;}

}

Log.d("How many", "avg = " + number+" " +listbean .get(true_start).lp+"

"+listbean .get(true_start).time);

//两点间穿插 20个数

for (int i=true_start;i<listbean .size()-1;i++){

double lp[] =interpolate(listbean.get(i).lp,listbean.get(i+1).lp,51) ;

double time[]

=interpolate(listbean.get(i).time ,listbean.get(i+1).time,51) ;

for (int j=0 ;j<lp .length ;j++){

lp_final[(i-true_start)*51+j]=lp [j];

time_final[(i-true_start)*51+j]=time[j];

}

}

double lowest_time=listbean.get(start).time;

double lowest_lp=max;

int lowest=0;

for (int i=start ;i< listbean.size() ;i++){

if(listbean .get(i).lp<lowest_lp && listbean .get(i).lp>30){

lowest_lp =listbean .get(i).lp;

lowest_time=listbean .get(i).time;

lowest=i;

}

}

Log.d("lowest point", "lp = " +lowest_lp);

Log.d("lowest point", "time = " +lowest_time);

for (int i=0;i<lp_final.length ;i++){

if(lp_final [i]<lowest_lp +12){

end =i;

end_lp=lp_final [i];

70

end_time =time_final [i];

if(Math.abs(end_lp-listbean .get(true_start).lp)<10){

for (int j=0;j<lp_final.length ;j++){

if(lp_final [j]<lowest_lp +8){

end =j;

end_lp=lp_final [j];

end_time =time_final [j];

break;

}

}

}

break;

}

}

end_point =end ;

end_time_point =end_time ;

Log.d("end point", "lp = " +end_lp);

Log.d("end point", "time = " +end_time);

slope_new =(lp_final

[end]-listbean .get(true_start).lp)/(listbean .get(true_start).time

-time_final [end]);

Log.d("slope", "slope new = " +slope_new);

RT20 = 20/slope_new;

Log.d("calcRT30", "RT60===" +listbean .get(listbean .size()-1).time);

RT60 = RT20 * 3*5000/(1000*listbean .get(listbean .size() -1).time);

Log.d("calcRT30", "RT60===" + RT60);

DecimalFormat df = new DecimalFormat("0.000");

RT60=Double.parseDouble(df.format(RT60));

return RT60 * 1.0;

}

private double doublecalculateVolume(byte[] buffer) {

double sumVolume = 0.0;

double avgVolume = 0.0;

double volume = 0.0;

for (int i = 0; i < buffer.length; i += 2) {

int v1 = buffer[i] & 0xFF;

int v2 = buffer[i + 1] & 0xFF;

int temp = v1 + (v2 << 8);// 小端

if (temp >= 0x8000) {

temp = 0xffff - temp;

}

sumVolume += Math.abs(temp * temp);

71

}

avgVolume = sumVolume / buffer.length / 2;

volume = Math.log10(avgVolume) * 10;

if (volume < 0 && volume != Double.NEGATIVE_INFINITY) {

volume = 30;

}

return volume;

}

	Abstract
	Acknowledge
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	List of Acronyms
	Chapter 1 Introduction
	1.1Decibel
	1.2Reverberation
	1.3Reverberation Time
	1.3.1Reverberation Time Behaviour

	1.4Android APP Introduction
	1.4.1Internal of APP (RT60 Measurement)
	1.4.2External of APP

	1.5Previous Work
	1.6Organization of Thesis

	Chapter 2 Method to the Android APP
	2.1 Reverberation Time Measurement
	2.2 Method to the Internal Structure of APP
	2.2.1 Fast Fourier Transform
	2.2.2 Octave Band Filter
	2.2.3 Pink Noise

	2.3 External Operate Structure of APP

	Chapter 3 Detailed Introduction about Working Proc
	3.1 Programming Language and Development Tool
	3.2 Sound Recording
	3.2.1 Apply Noise Suppression
	3.2.2 Select Audio Input Source

	3.3 Data Acquisition
	3.3.1 Frequency Band Separation
	3.3.2 Calculate Sound Pressure Level

	3.4 Data Analysis
	3.4.1 Find the highest Sound Pressure Level point
	3.4.2 Fix the starting point of linear decay
	3.4.3 Fix the ending point of linear decay
	3.4.4 Calculate RT60 results

	Chapter 4 Data Comparison
	4.1 Nor140
	4.2 RT60 comparison
	4.2.1 Measurement rooms
	4.2.2 RT60 for two rooms by Nor140
	4.2.3 RT60 for two rooms by virtual phone on lapto
	4.2.4 RT60 for two rooms by two android phones

	4.3 Comparison by each test equipment in each room
	4.4 Inaccuracy analysis

	Chapter 6 Conclusion
	Chapter 7 Future Work
	Reference
	Appendix
	Recording
	IFFT
	FFT
	Analyze

	Blank Page
	Blank Page

