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The generation of the impact sound by the act of the human walk involves two factors, the characters of the 
footfall and the shape of the induced floor deflection.  The footfall noise is created by the impact excitation 
where the character of the footfall depends on the foot-ware: the heels and the frequencies of the footfall. The 
shape of the floor deflection depends rather on the geometrical walking pattern and the construction of the floor 
structure. In this investigation, the vibration pattern of the light-weight construction floor is created by the same 
walking object, a male with common height. The excitation from the person to the floor in the FE simulations is 
a function of the length of the foot and the weight of the walking object. The geometrical time history of the foot 
step allows it to have different directions in the room. Since the excitation is assumed to be deterministic, 
differences between the excitation frequencies are estimated from video recordings. The goal of this 
investigation is to determine the difference of the floor structure deflections between two different walking 
paths: one is perpendicular to the bearing beams and the other is the diagonal path. 

1 Introduction

Timber framed buildings have become a more and more 
popular choice for many countries with rich forest 
resources since the late seventies, especially when the 
modern computerized numeric control machinery (CNC) 
have been adopted to accomplish many heavy and labor 
demanded manufacturing tasks, for example the cutting 
process with high precision. But there are still 
disadvantages for modern timber framed structures as 
compared with concrete structures: the noise from the 
footsteps in adjacent rooms both above and on the same 
floor in such buildings can be audible. The numerical 
predictions of the human footsteps induced structure 
vibration and acoustic wave propagation on the floor 
structure depends on many factors, the time history of the 
interaction between the impact source by the human body 
and the floor structure as the receiver, the foot-ware of the 
person, the angle of the impact excitation, the construction 
of the light-weight floor and ceiling structure and the 
geometrical walking pattern, [1, 2, 3, 6]. Even all the 
factors that have been listed above are important and many 
details are not fully understood yet, the main focus of this 
study is to investigate if there is a relationship between the 
floor deflection and the walking paths. The first question is 
if the spatially regular footstep excitation history can be 
assumed in the numerical calculations. If the spatial 
distribution of the impact loads in one case will follow a 
real human walking pattern, and in the other case can be 
assumed to have the same periodic walking pattern, if the 
difference between the excitation location is small in 
comparison to the dimension of the floor, how will the 
difference affects the final calculation results of the 
vibration displacement calculations. The second question 
concerns the orientation of the bearing beams and the 
walking pattern itself in the fluid structure interaction 
calculations.

2 Measurements

The field’s measurements are provided for a male with a 
common body. The body weight is 75 kilogram. To be able 
to provide meaningful information for the excitation 
locations, the walking person has been walking on a check 
paper with painting color under his feet. 

   

3 Footsteps/Gait

To be able to locate the spatial distribution of the footsteps 
effectively with an acceptable correction, a roll of check 
paper has been used. The length for each side of the square 
is 10 mm. In this fashion, the relatively exact walking trace 
can be captured. The walking trace is shown on figure 1. 

Fig. 1: Walking foot steps 

The length of the paper roll is 4.6 meters and the width is 
0.6 meter. In the measurements, the first and the final steps 
are not included they act only as reference for the other 
steps. All together, seven footsteps are recorded in this 
distance and are analyzed. To be able to investigate how to 
reproduce the walking pattern numerically, several 
parameters have been documented for each step, among 
others the distance between the main point of the foot and 
the dividing line, the distance between two steps and the 
angle of the foot, all the important parameters are shown in 
figure 2. 
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representing the heel and the forefoot. In figure 4 and 5, the 
time histories of complete gait cycles at a gait speed of 1.3 
m/s for the left and right feet as well as the cycle for one 
foot subdivided into the time histories for the heel and 
forefoot are shown. In the simulations, the loads were 
applied at the discrete circles, representing the heel or 
forefoot, as forces on surfaces in the normal direction to the 
floor where the amplitude was calculated as a time history 
as shown in figure 5 times the bodyweight. A bodyweight 
of 75 kg was assumed in the simulations. Since the person 
walking on the floor was modelled as forces on surfaces, 
the influence of the mass and the damping of the person 
was not accounted for, a fact that might be of importance 
for a light-weight floor structure. 
Full transient analyses were performed with a time-step of 
0.002s. The analysis for the gait along the centre axis of the 
floor was performed for the duration of four seconds and 
for five seconds for the analysis along the diagonal axis of 
the floor. 

Fig. 4: The reaction force of a gait cycle for two steps 

Fig. 5: The reaction force time-history for a step divided 
into separate time-histories for the heel and the forefoot. 

5 Results

The mean velocities, , in the direction normal to the 
floor were calculated for the two floor structures. For the 
two gait patterns, they are shown in figure 6 and 7, 
respectively. The graphics show that there is some 
difference in the partial energy distribution depending on 
how people are walking for instance in the middle of the 
floor or in the diagonal. For the diagonal gait pattern, the 
obtained mean velocity is markedly lower close to the 

corners of the floor, as expected, but at the centre the 
velocity is higher than for the gait pattern along the centre 
axis. The mean velocity obtained from the gait pattern 
along the centre axis is more even in amplitude. 

Fig. 6: Mean velocity of the floor from the gait loading 
along the centre axis of the floor. 

Fig. 7: Mean velocity of the floor obtained from the gait 
loading along the diagonal axis of the floor. 

The acceleration induced by the footfall over the floor was 
calculated from the FEM simulations. The vibration level of 
the floor can be formulated by 

                                                  (1)                  

where   is the reference velocity. 

The vibration levels are plotted on third octave band for the 
two gait patterns as shown in figures 8 and 9. 

The vibration level curves show that the energy distribution 
is more important at low frequency along the centre axis. 
The energy amplitude decreases with increasing frequency. 
This phenomenon illustrates the problems related to the 
flanking transmission.  
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Fig. 9: Vibration level of the floor obtained from the gait 
loading along the diagonal axis of the floor. 

Along the diagonal, the vibration level has an energy peak 
at low frequency too, but not so high. The slope of the 
vibration level is smoother also.  

Due to the limited frequency coverage of the FE calculation 
some frequency bands are not taken into account and result 
in holes in the stairs graphics. 

6 Conclusions

The analysis techniques presented in this paper show that 
how we walk in a room have a direct impact on the energy 
distribution. When we walk in the middle of the room the 
vibration level is higher as compared to walking along the 
diagonal. The main goal, however, is to be able to improve 
the sound insulation of light-weight structures built today. 
In such improvement work it is importance to have tools 
that are able to take into account as many factors as 
possible. By employing FE-modeling techniques together 
with evaluation procedures as those presented in this paper 
it is possible to take into account general loadings, 
geometries and material properties. 


