Examensarbete vid Byggnadsmekanik och Teknisk akustik SEARCH FOR MASTER PROJECT CANDIDATE!

A PROPOSAL OF A MASTER PROJECT IN BUILDING ACOUSTIC AND STRUCTURE DYNAMICS: **STATISTICAL INVESTIGATION OF HUMAN** WALKING PATTERN

Beginning

As soon as possible

Supervisors

Delphine Bard, PhD Div. of Acoustic Engineering

Kent Persson, PhD Div. of Structural Mechanics

Examinor

Göran Sandberg, Professor Div. of Structural Mechanics

To be performed at

Div. of Structural Mechanics, Faculty of Engineering, Lund University

LUNDS UNIVERSITET Lunds Tekniska Högskola

Introduction to the project

There is a correlation between the weight, the size of the shoes and the height of the human, the walking impact load in both the vertical direction and the transverse direction for a male. The limitation of the gender depends on the fact that there does not exist a female walking load as a function of height and weight, due to the complex mass distribution of female bodies. How ever a statistical investigation of the human walking pattern in an arbitrary room with a finite size has not yet been done. The statistical investigation can lead to a reliable construction of a Brownian motor that simulates a reliable human walking pattern. Together with the known impact load in three directions, a human walking induced structure vibration prediction model for a lightweight timber floor can be constructed. Two scientific articles have outlined the main essence of the human walking impact load as a function of mass and height [1, 2]. With the help of all the experimental measurement values, a Brownian engine can be constructed [4]. The basic principle of the Markov chain can be found in a number of different literatures in mathematical statistical calculations [3]. This statistical method will give a reliable prediction model of the human walking induced load vector as a function of time, spatial variables and human characters

Task

- Investigate the human walking time history statistically
- Investigate the human walking angle and the length of steps
- Investigate walking pattern in an arbitrary room
- To calculate the expectation values and the corresponding variance of the human walking steps and step angles with the help of the a statistical calculation code where the basic linear regression analysis is assumed.
- To construct a human walking pattern, with the help of a Brownian motor code.
- To calculate the human walking induced time history with the help of Finite element software, MD Nastran 2006.
- To extract the transverse deflection of the floor structure in the post-processing to be able to calculate the flexure wave sound radiation.

References

[1] Lievens, Matthias MODEL OF A PERSON WALKING AS A STRUCTURE BORNE SOUND SOURCE Proceedings of the 19th INTER-NATIONAL CONGRESS ON ACOUSTICS in Madrid 2007

[2] Alexander Ekimov and James M. Sabatier *Vibration and sound signatures of human footsteps in buildings* The Journal of the Acoustical Society of America – August 2006 – Volume 120, Issue 2, pp. 762-768

[3] Daniel W. Stroock *An Introduction to Markov Processes* ISBN: 3540234519 Springer; 1 edition (May 31, 2005)

[4] Albert Einstein *Investigations on the Theory of the Brownian Movement* ISBN: 0486603040 Publisher: Dover Publications (June 1, 1956)