

Ljud i byggnad och samhälle (VTAF01) – Lab 1

SIGI

JUAN NEGREIRA DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

Outline

J. Negreira / Ljud i byggnad och samhälle / VTAF01 / Lab 1- 16 April 2018

Part 1 – Eigenfrequencies in a guitar string (I)

In general:

 $\lambda = 2L/n$ $f_n = n \cdot v/2L$

v=(tension/mass-length) ^{1/2}

Eigenfrequencies in a guitar string

- Wave equation in a string
- Frequency = f(length, density, tension)
- Fourier transform (FFT): time \rightarrow freq. domain

Part 1 – Eigenfrequencies in a guitar string (II)

• Notes of provided code *readsound.mat*

Part 1 – Eigenfrequencies in a guitar string (III)

• Example of postprocessed data with *readsound.mat*

Outline

J. Negreira / Ljud i byggnad och samhälle / VTAF01 / Lab 1- 16 April 2018

Modal analysis – Intro

Modal analysis is the field of measuring and analysing the dynamic response of structures and or fluids during excitation

Note on modal superposition (I)

Source: http://signalysis.com

Note on modal superposition (II)

UNIVERSITY

SDOF – Complex representation (Freq. domain)

• Complex representation of a damped SDOF

SDOF – Frequency response functions (FRF)

- In general, FRF = transfer function, i.e.:
 - Contains system information
 - Independent of outer conditions

 $H_{ij}(\omega) = \frac{\widetilde{s}_i(\omega)}{\widetilde{s}_j(\omega)} = \frac{\text{output}}{\text{input}}$

- Different FRFs can be obtained depending on the measured quantity
 - Excitation measured with a force transducer in the hammer
 - Response measured with accelerometers

Part 2 – Modal analysis of a beam

Modal analysis of a steel beam

- Bending waves in a beam
- eigenfrequency = f(E, I, density, length)
- Fourier transform (FFT): time \rightarrow freq. domain

In the Lab report, you will see (for the sake of simplicity) the theoretical background for a beam.

However, you will be able to compare the analytically calculated bending modes of the floor using the proposed formulas for the beam (considering the floor as 2D beam whose length is the span of the wooden floor)

Modal analysis of a steel beam wooden floor

- Bending waves in a beam floor
- eigenfrequency = f(E, I, density, length, width)
- Fourier transform (FFT): time \rightarrow freq. domain

Part 2 – Experimental modal analysis: Lab setup

Note on frequency content of excitation

Figure 2.12

J. Negreira / Ljud i byggnad och samhälle / VTAF01 / Lab 1- 16 April 2018

Experimental Modal Analysis (EMA)

Damping, frequency — same at each measurement point Mode shape — obtained at same frequency from all measurement points

Experimental Modal Analysis (EMA) – Examples

Thank you for your attention!

juan.negreira@construction.lth.se

LUND UNIVERSITY