Ljud i byggnad och samhélle / VTAF01

Vagl — Endimensionell vagutbredning

Har kommer vagekvationen for framfor allt longitudinalvagor att tas fram. Nar vi har fatt
fram vagekvationen och en losningsmetodik kommer vi att behandla endimensionella
longitudinalvagor i luft. Har behandlas aven skjuvvag och bojvag i fasta material.

Harledning av vagekvationen, longitudinalvag i en stang

Vi tanker oss att vi skar ut en liten del av en stang, frilagger denna och staller upp
Newtons rorelseekvation. Stangbiten har langden dx. Vidare har vi en utbredd massa per
langdenhet 2= p S, dar p &r densiteten och S ar tvarsnittsarean. Pa den ena snittytan vid
koordinaten x verkar en kraft F(x) och pa den andra snittytan vid x+dx verkar samma
kraft plus en viss forandring av denna, F(x+dx), vilket kan Taylorutvecklas och
approximeras med F(x+dx) ~ F+oF/ox-dx. Forskjutningen av den vanstra snittytan
betecknas u(x) medan forskjutningen av den hogra snittytan da blir u(x+dx), som pa
samma sétt approximeras med u(x+dx) = u(x)+ou/ox-dx.

dx
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Figur 1 Frilaggning av stangelement

Vi stéller nu upp rorelseekvationen som sager att summan av krafterna ska vara lika med
massan ganger tyngdpunktens acceleration

(—) F—(F+%:dxj:ma 1)

Om dx ar mycket litet kan vi vidare approximera forskjutningen av massans tyngdpunkt
med u(x+dx/2) ~ u(x). Alltsa har vi

m = pdx (2)
och
GET
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Rorelseekvationen kan nu forenklas till

%dx:—y-dx-u 4)
=

oF o°u

ol (5)

For att komma vidare behdver vi nu ytterligare en ekvation som relaterar krafterna med
forskjutningarna. Fran Byggnadsmekaniken kanner vi till Hookes lag, som séager att
spanningarna o &r proportionella med téjningarna &

oc=E¢ (6)

dar E &r elasticitetsmodulen och tvarkontraktionen forsummats. Vidare ar spanning
detsamma som kraft per ytenhet och t6jning detsamma som forskjutning per langdenhet.
Vi maste dock beakta att positiv spanning ar dragen, medan vi har satt kraften tryckt, sa
vi far ha negativt tecken pa kraften:

U=—§ (7)

Tojning forhaller sig till forskjutningen som

ou
o=

=— 8
P (8)
Den sokta relationen mellan krafterna och forskjutningarna ar saledes
ou
F=-ES— 9
P 9)

Om vi deriverar ekvation (9) en gang med avseende pa x och stoppar in i ekvation (5), sa
har vi slutligen vagekvationen for en longitudinalvag i en stang:

o’u o°u
B (10)
IEN
ou p %
- _FZ"_0 11
ox*> E ot? (11

Vagekvationen ar tydligen en andra ordningens partiell differentialekvation. For att l6sa
den behovs tva begynnelsevillkor och tva randvillkor. De flesta vagekvationer, sa som
transversalvagen i en gitarrstrang, en torsionsvag i en svarv eller elektriska vagor, har
denna form. B6jvagen i en balk har dock ett annat utseende, den &r av fjarde ordningen.
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Ofta anvander man sig av forskjutningshastigheten v = ou/ct i stéllet for forskjutningen u.
| sadana fall blir vagekvationen istéllet

oV p o
Y e o 12
ox*> E ot (12)

eftersom derivatan o/t verkar lika pa alla termer. Ekvation (5) och (9) blir i detta fall

oF v

L 13
- My (13)
F_ gV (14)
ot OX

vilket ser lite snyggare ut, da relationerna ar symmetriska (kom ihag att 2= p S). Dessa
ekvationer brukar kallas faltekvationerna. Deriverar vi nu ekvation (13) med avseende pa
x och ekvation (14) med avseende pa t, sa har vi

o°F o’V
——u- 15
o atox (19)
2 2
OF _ gs. OV (16)
ot Otox
och om vi stoppar in den ena i den andra
0°F u O°F
=T 17
ox* ES ot? 7
=
2 2
8F_£_8F:O (18)

ox*> E ot?

sa far vi vagekvationen igen, men denna gang med kraften F som variabel. Det &r
tydligen likgiltigt vilken variabel man anvénde, och man anvander l[ampligen den som
lampar sig bast for problemet i fraga. For vagor i fasta material ar det vanligast att
anvanda forskjutning som variabel. De olika variablerna brukar bendmnas faltvariablerna.

Vagutbredning

Men vad &r da en vag?
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Figur 2 Vagutbredning i en matta.

Vi kan tanka oss tva personer som skakar en matta, vi kallar dem A och B. Vi tanker oss
vidare att B haller sin kant stilla medan A gor en plétslig rorelse uppat vid sin kant.
Resten av mattan vill nu folja med i denna rorelse, med bérjan med de punkter pa mattan
som ar narmast A. Rorelsen fortsétter sedan att sprida sig med en konstant hastighet tills
den nar B. Om A fortsatter att skaka sin ande upp och ned, och provar olika takt i
skakandet, olika frekvens, sa kommer de finna att om man skakar snabbt sa blir ’pulsen”,
eller vaglangden, kort och om man skakar langsamt sa blir vaglangden lang. Men oavsett
vilken frekvens de skakar med s& kommer spridningshastigheten att vara densamma. Med
andra ord, héndelsen att ’réra sig uppat” sprider sig ldngs mattan med en viss hastighet
som vi kan kalla c, vagutbredningshastighet. Det kanns naturligt att ¢ beror pa mattans
vikt och hur hart A och B drar i mattan, hur stor spannlngen ar. Ar massan stor, tung
matta, transporteras vagen langsamt. Ar spanningen stor gar vagen snabbt. Den initiella
forskjutningen kommer att repeteras vid en punkt beldgen en stracka x fran A, och detta
sker efter x/c sekunder, det vill sdga den tid det tar for vagen att utbreda sig strackan x.

Det &r viktigt att inse att ingen massa transporteras av vagen, vad som transporteras ar
endast moéjligheten till rérelse. Massan i mattan ror sig endast upp och sedan ner igen.

| exemplet med mattan ovan var forskjutningen uppat medan vagutbredningen gar mellan
A och B, vilket ar en transversalvag.

| exemplet med stangen var vagutbredningen och forskjutningen riktad at samma hall, en
longitudinalvag. Nedan visas exempel pa hur harmoniska transversal- och
longitudinalvagor kan se ut. I den 6vre figuren ar vaglangden A, partikelforskjutningen w
i y-led samt vaghastigheten cr markerad. | den undre figuren ar vaglangden A,
partikelforskjutningen u i x-led samt vaghastigheten ¢, markerad.
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Transversalvag
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Longitudinalvag
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Figur 3 Exempel pa transversalvag och longitudinalvag.

Hur ska man da beskriva vagutbredningen? Vi atergar till exemplet med
longitudinalvagen i en stang. Vi beskrev har férskjutningarna i en punkt med u, dér u
bade ar en funktion av rummet och tiden.

u=u(xt) (19)

Om vi nu tittar i en specifik punkt pa stangen, sag x = 0, dar vi driver stingen med en
bestamd forskjutning ugsy S& har vi dar endast en variabel

U(O! t) = udriv(t) (20)

Vi har tidigare sagt att vad som karakteriserar en vag ar att rorelsen fortsétter att sprida
sig med en konstant hastighet, som vi kallar c. Vid en annan position x =x; pa stangen

kommer darfér samma tidshistoria att intraffa som for drivpositionen, men forsenat pa
grund av gangtiden x;/c. Vagformen forandras alltsa inte

u(xllt) = udriv(t =X / C) (21)

Helt allméant, for en godtycklig position, har da forskjutningen reducerats till en funktion
av en variabel t — x/c. Vi har dock missat att vagen i allméanhet kan ga bade framat, i
positiv x-riktning, som bakat, i negativ x-riktning. Alltsa behover vi lagga till en
bakatgaende vag, vilken kan beskrivas med en variabel t + x/c

u(x,t)=u, (t—x,/c)+u (t+x/c) (22)
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Ovanstdende funktion kallas d’ Alemberts 16sning och ir 18sningen till vagekvationen pa
den mest generella formen.

Vi har sagt att vagformen inte dndrar sig beroende pa var och nar vi betraktar den, och att
alla delar av vagen ror sig med samma hastighet. For en given tidshistoria vid x = 0, sa
kan man fa vagformen, det vill siga motsvarande x-beroende vid en given tidpunkt
(j&mfor med fotografi), genom att Gverfora varje forskjutning vid x = 0, till x-skalan med
hjélp av hastigheten c, se figuren nedan. Funktionerna for forskjutningens t-beroende och
forskjutningens x-beroende kommer da att bli spegelbilder av varandra. Matematiskt kan
man se detta som en konsekvens av att t- och x-termerna i argumentet t — x/c har olika
tecken.

ux,t)
/_ Vid x=0 [ Vid x=x;
t=0 =t; t=t, =t t
u(x,0) |
=0
X
u(x,ty)
t=t1

N\

x=

X
u(x,ts)
t=t3
X=Xy X

Figur 4 Tids- och rumsberoende for vag.

Vi har nu forst harlett vagekvationen och sedan resonerat oss fram till hur 16sningen till
denna bor se ut. Genom att satta in den antagna losningen i ekvationen, s kan vi se om
den stammer. For enkelhets skull antar vi att vi endast har en framatgaende vag, for
bakatgaende vag galler samma sak. Anta
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u(x,t)=u, (t—x/c)=

ou 1 o‘u 1

—=—"U'(t=x/c) —==Uu"(t-x/c 23
~ = oultox/e) o= ul(t-x/c) (23)
ou o°u

—=u'(t—-x/c) —=u"(t-x/c
L =ULt=x/c) o =ul(t-x/c)

Har betyder > derivata med avseende pa hela argumentet, det vill séga ou/o (t—x/c). Insatt
i vagekvationen ger detta

Cizuz_guj=o (24)

och for att detta ska gélla sd maste vaghastigheten vara
o,

vilket verkar rimligt, da ett tyngre medium ger en langsammare vag, medan ett styvare
medium ger en snabbare vag.

Harmoniska vagor

Vi har nu visat att funktioner av formen u(t+x/c) loser vagekvationen och att
vaghastigheten ¢ bestams med hjalp av elasticiteten och densiteten. Ofta ar det dock
praktiskt att begransa sig till harmoniska funktioner eftersom varje godtycklig funktion
kan beskrivas med hjalp av harmoniska funktioner. Vi antar nu att drivningen ar en
harmonisk funktion

U(O,t) = udriv(t) = ljdriv COS(a)t) (26)

Om vi vill ha en I6sning till vagekvationen pa denna form behdéver vi bara byta ut t mot
t+x/c.

u(x,t) = Uy, cos(a(t £ x/c)) (27)
Genom att infora en ny term k, som vi kallar vagtal, kan skrivsattet férenklas

k=wlc =

u(x,t) = U, cos(amt + kx) (28)

Vagtalet k har tydligen samma betydelse for rumsberoende som @ har for tidsberoendet.
Vi skriver upp de bada frekvenstermerna jamte varandra

2
-

w = 2718 (29)
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(o 2A 2 (30)
c A
Det leder till ett enkelt samband mellan vaglangd och frekvens
c=f4 (31)
Har ar T periodtid och A vaglangd.
T A
Figur 5. Periodtid T och vaglangd A.
Andra vagtyper i fasta material
| exemplet med stangen ovan har vi bortsett fran tvarkontraktionen. Om materialet i
stangen ar isotropt med tvarkontraktionstalet v far vi korrigera vagekvationen till
2 2
o°u o ou (32)

ox2 E(l-v?) a2

och vaghastigheten blir da istallet

c= E@-v) (33)
\ »

Skjuvvagor

Pa samma satt som med longitudinalvagen ovan kan man stélla upp motsvarande
vagekvation for skjuvvagor. Som innan anvander man rorelselagen, fast nu i vertikalled,
och skjuvspanning istallet for normalspanning. Vagekvationen blir da

o’w  p O°w

— .= =0 34
x> G ot (34)
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dar w ar forskjutningen i tvarriktningen® och G materialets skjuvmodul. Den har samma
I6sning som ovan,

w = w(X,t) = Wcos(a(t £ x/c)) (35)
med vaghastigheten

c- |© (36)

P

For isotropa material ar vaghastigheten for transversella skjuvvagor lagre an for
longitudinella tryckvagor eftersom

E
G=——— 37
2(1+v) (37)

Bojvagor

Vagekvationen for bojvagor i balkar savél som plattor harleds med hjélp av elastiska
linjens ekvation. Den skiljer sig fran de ovanstaende genom att den bestar av fjarde
rumsderivatan av forskjutningen istéllet for andraderivatan som ovan

4 2
g W, sl W

x P 9

Dér B ar balkens bojstyvhet, for rektangulart tvarsnitt

3
B:H:E%% (39)

och S ar balkens tvarsnittsarea. | en lang balk ar vagekvationens (harmoniska) ldsning
w = W(X,t) = Wcos(at £ kx) (40)

vilket & samma som for longitudinella vagor. Nar man sétter in l6sningen i
végekvationen kan man 16sa ut vaghastigheten® c; som

® | B /Eh2
= — = . _— = . [ 41
o k Jo 4,08 Yo 412,0 (41)

Vad man kan observera har &r det viktiga resultatet att vaghastigheten ar beroende av
frekvensen, ju hogre frekvens desto snabbare gar vagen. Vaghastighetens

! Ofta anvander man sig av v for att beskriva transversell férskjutning, men hér sparas den till hastighet i
longitudinell riktning.

% Nar det galler vaghastighet for bojvagor méaste man skilja man mellan fashastighet c; och grupphastighet
cq- Den forra anger hur snabbt information i vagen (fasen) fortplantar sig, medan den senare hur energin
fortplantar sig. De forhdller sig sd att ¢, = 2c;



Ljud i byggnad och samhélle / VTAF01

frekvensberoende kallas dispersion och sambandet ovan kallas dispersionsrelation. For de
tidigare namnda vagtyperna ar ju vaghastigheten samma oavsett frekvens.

Vidare kan man observera att om frekvensen gar mot oandligheten, vilket ar fysikaliskt
mojligt, sa gar hastigheten ocksa mot oandligheten, vilket inte &r fysikaliskt mojligt da
information inte kan fardas snabbare an ljuset. Dessforinnan sétter dock teorin
begransningar i att antagandena hos balkteorin som ligger till grund for elastiska linjens
ekvation inte langre galler. Vaglangden, som ska vara betydligt langre an balkens
tjocklek, minskar med hogre frekvens.

Endimensionell vagutbredning i fluider

De fenomen man framfor allt behandlar i akustiken &r vagutbredning i fluider, namligen
ljudvagor i luft. Med fluider menar man medier som inte tar upp skjuvspanningar, det vill
saga gaser och vatskor. Saledes géller de ekvationer som vi kommer att ta fram har bade
for ljudutbredning i luft och i vatten. For att hitta vagekvationen skar vi ut en
infinitesimal strimla av fluiden, frilagger denna, staller upp rorelseekvationen och ser vad
som hander. Fluidelementet har langden dx. Vidare har vi en massa per volymsenhet, det
vill sdga densitet p. Pa den ena snittytan verkar ett tryck p(x) = F/S och pa den andra
verkar samma tryck plus en viss forandring av denna, p(x + dx) = p(x) + op/ox-dx.

Forskjutningen av den vanstra snittytan betecknas med vibrationshastigheten v ganger ett
litet tidstillskott dt, sa u = v dt, medan forskjutningen av den hdgra snittytan betecknas
(v+ov/ox-dx)dt. Det bor har papekas att med vibrationshastighet si menar vi den del av
fluidens hastighet som fluktuerar, vi tar alltsa inte med det konstanta flodet fran
exempelvis vind, flaktar eller strommande vatten.

dx

............................................

i

e e

FYYY

=

—3
X vdt x+dx  (v+oviox-dx)dt

Figur 6. Fluidelement med tjockleken dx.

Vi stéller upp rorelseekvationen for fluidelementet

(—) F—(F+%dxj:ma (42)

Vi anvénder tryck istéllet for kraft, sa:

10
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pS—(pS +%dx Sj:ma (43)

Om dx ar mycket litet sa kan vi anta att massans forskjutning kan beskrivas enbart med u
eller v dt:

m= pS - dx (44)
ov

a=— 45
p (45)

Rorelseekvationen kan nu forenklas till

op ov
oS __ 9 46
19)4 pat (46)

For att komma vidare behdver vi nu ytterligare en ekvation som kan relatera krafterna
med forskjutningarna. | fallet med en stang anvande vi Hookes lag. Nar det galler fluider,
eller atminstone om vi begréansar oss till gaser, sa far vi anvanda den allméanna
tillstandslagen for gaser. | fallet med vétskor kan man hitta motsvarande samband, som vi
dock inte tar upp har. Vi borjar dock med att beskriva fordndringen i
vibrationshastigheten i relation till t6jningen:

_au oc oV

& = —=— (47)
OX ot oX

| Hookes lag har spanningen s och tdjningen & samma tecken. Detta beror pa att dragning
ar positiv spanning medan tryck ar negativ. Motsvarigheten till Hookes lag i luft maste
darfor ha negativt tecken. Vi kan da skriva:

p=-De& (48)

dar D ar bulkmodulen (eller volymstyvheten). Vad vi nu behdver ar ett uttryck for denna.
Frén fysikkursens avsnitt om gasfysik kanner vi till att allmanna gaslagen vid adiabatisk®
kompression kan skrivas som

PV 7 =konstant (49)

dar P ar tryck, V ar volym och yar kvoten mellan varmekapaciteterna y = C,/C,. For
tvaatomiga gaser, som luft, ar y= 1.4. Vi anvander har stor bokstav for trycket P. Detta
beror pa att det har handlar om det totala trycket, som &ar uppbyggt avett konstant
atmosféarstryck Py samt ett vibrationstillskott p(t) som vi &r intresserade av, P = Py + p(t).

Vi logaritmerar och deriverar nu gaslagen for att fa ett anvandbart uttryck.

® En adiabatisk tillstdndsférandring betyder, som ni vet frén fysikkursen, att processen sker utan
varmetransport eller varmeforluster, det vill saga forlustfritt i vart fall. Da man vill ta hansyn till forluster,
som i absorbenter, tanker man sig istallet isoterma tillstandsandringar, PV=konstant.

11
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In(PV”) =In(konstant) = In(P) + y In(V) = In(konstant)
oP/at oV /ot (50)
+y =0
P \%

%(In(P) +7In(V)) = g(ln(konﬁa”t)) -

Tidsdifferentialen dt finns i alla led och kan darfor forkortas bort. Vidare kan vi
approximera de bada andra differentialerna dP och dV med differenser

PR, VA AP AV g (51)
P Y P "V

Man kan nu se att AP = P(t) — P(0) = p(t) och att £= AV/V. Séledes har vi

% () =0 (52)

Som en sista approximation antar vi att man fér sma tryckforandringar kan ersétta det
totala trycket P i ndmnaren med det konstanta atmosfarstrycket Py

p(t)
P

0

+ye(t) =0 (53)

Vi flyttar om sa att vi kan identifiera bulkmodulen

p(t) = —Pet) =
D= 7’P0

Om vi kombinerar ekvation (47) med tidsderivatan av ekvation (54) sa far vi den andra
faltekvationen

ap(t)
ot

(54)

e (55)

Om vi stoppar in ekvation (55) i (46), sa har vi slutligen vagekvationen for en
longitudinalvag i luft (i en vatskevag far vi anvanda en annan bulkmodul D):

op v o%p o
x Ca Wz_patax o%p  p %p
o - 9P _POIP_g (56)
d__pN o°p _ ox™ R ot
ot ° ox ? _7P°8x8t

Som innan kan vi skriva vagekvationen for den féltvariabel som vi vill anvanda i varje
specifikt fall. Dessa skriver vi dock inte ut denna gang. Ur ekvation (56) kan vi vidare
identifiera vaghastigheten:

12
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c= | (57)
P

For luft kan vi nu latt berakna vaghastigheten. Luftens densitet ar p = 1.18 kg/m? vid
22°C och normalt atmosfarstryck som ar Po = 1.013-10° Pa. Konstanten y som relaterar
varmekapaciteterna for konstant tryck och konstant volym, ar y=1.4 for tvaatomiga gaser
som luft. Saledes &r ljudutbredningshastigheten for luft:

=347 m/s (58)

\/1.4-1.013-105
1.18

Luftens densitet ar dock beroende av temperaturen, s om man vill vara noggrann far
man modifiera formeln for ljudhastigheten:

c= 1R (1+ T ]:331.4-(“ T j (59)
oM =0 2.273 2.273

dar T denna gang &r temperaturen i grader Celsius. Vanligvis raknar man dock med ¢ =
340 m/s, vilket motsvarar 18-19°C. Om vi har en allméan fluid far vi istallet anvanda
bulkmodulen

¢ [P (60)
o,

For sotvatten vid 20°C &r bulkmodulen D = 2.18-10° Pa. Som tidigare kan man anvanda
andra faltvariabler &n trycket i vagekvationen, till exempel partikelhastigheten* v.
Vanligen beskriver man ljudet med trycket p(x,t), men partikelhastigheten anvands ocksa
vilket vi snart ska se.

Harmonisk I6sning till vagekvationen i luft

En harmonisk 16sning till vagekvationen i luft uttryckt i tryck ar

p(x,t) = p, cos(at —Kkx) (61)
for en vag som fortskrider i positiv x-riktning, eller uttryckt i komplex form

p(x,t) = p.e"™ (62)

Om man vill ta reda pa vad partikelhastigheten dr kan man anvanda rorelseekvationen

*Var observant p att partikelhastigheten v(x,t) = du(xt)/ét skiljer sig frn vaghastigheten c. Den forra ar
hastigheten i varje 6gonblick for fluidelementet eller partikeln som befinner sig vid x och den senare &r
hastigheten med vilken vagrorelsen utbreder sig.

13
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ik 1 1 (63)
A p+e|(wt—kX) _ = p+e|(wt—kx)
1% lw pC

Detta 4r ett viktigt resultat och konstanterna framfor uttrycket brukar fa en egen
beteckning. Vi definierar darfor den specifika akustiska impedansen Z, eller
vagimpedansen, som kvoten mellan det komplexa trycket och den komplexa hastigheten i
den framatskridande vagen:

z

P (64)
Vv

Impedansen &r i allméanhet en komplex storhet och innehaller alltsa bade amplitud och
fas. For en endimensionell vag som férdas i positiv x-riktning blir Z = Z_en reell storhet

7 2P0 (65)

7 P (66)

Impedans kan beskrivas som ett motstand till rérelse, en hog impedans i mediet innebéar
att det kravs ett hogt tryck for att astadkomma en viss partikelhastighet. Mekanikens
motsvarighet till impedansen ar styvhet, alltsa kraft genom forskjutning eller motstand
mot deformation. Vi kan ocksa se det som en éverforingsfunktion som diskuterades i
avsnittet om SDOF.

Vid ljudévergangar mellan olika medier ar det férhallandet mellan mediernas impedanser
som avgor hur mycket av ljudenergin som transmitteras in i det nya mediet och hur
mycket som reflekteras. Vid 20°C och normalt lufttryck (och inget annat anges) brukar
man rékna med impedansen for luft Z,, = 415 Pa-s/m och for sotvatten Zgswatten =
1.48-10° Pa-s/m.,

For fasta material brukar man istallet anvanda sig av mekanisk vagimpedans, som
definieras

Z=— (67)
V

Ljudtrycksniva

Vid praktiska andamal ar det osmidigt att anvanda tryckamplituden p som matt pa

ljudstyrkan. Det &r vanligt inom signalomradet anvanda effektivvardet for
tryckfunktionen istallet,

14
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N EOR (68)

Dar p kallas effektivvarde eller rms-varde (root-mean-square — roten ur tidsmedelvardet
av trycket i kvadrat). For en periodisk signal, vilket vi kan utga ifran i akustiska
sammanhang, sa galler att p = f)/\/i . Inte heller detta &r sa praktiskt smidigt eftersom

ljudtrycket har sa stor spannvidd. Darfor inférde man tidigt mattet ljudtrycksniva som
definieras som

=2

L, =10 |og('°—2] _ 20I09(L} dar p,,, =2-10°Pa (69)

ref ref

L star for ljudniva och index p indikerar att det ar ljudtrycksnivan, till skillnad fran andra
som visas senare. | regel sdger man lite kortare ljudniva och da ar det underforstatt att det
ar ljudtrycksnivan som avses da denna ar vanligast anvand. Enheten for ljudniva ar
decibel, dB.

Ljudintensitet och ljudeffekt

Ljudintensiteten definieras som ljudenergi per tidsenhet som passerar genom en areaenhet
vinkelrat mot utbredningsriktningen. Fran grundkursen i mekanik far vi uttrycket for
effekt i varje dgonblick som

() = F(t) -v(t) (70)

dar TI(t) ar ljudeffekten i W, F(t) ar kraften som verkar pa areaenheten och v(t) ar
partikelhastigheten. Ljudintensitet ar alltsa effekt per areaenhet
T1(t)

5 (71)

|(t)=‘2']|—1\;,I = 1@t)=

om energin ar jamnt fordelad 6ver ytan S. Vi kan skriva den momentana ljudintensiteten
som

1(t) = p(t)-v(t) (72)

Precis som med tryck och hastighet &r det mer anvandbart med tidsmedelvardet av
ljudintensiteten

= [ p®) vt (73)

Tidsmedelvardet av effekten (om energin &r jamnt fordelad over S) &r

15
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== p(t)-v(t)dt (74)

—|w»
O Sy, —

Om vi begransar oss till en endimensionell vagrorelse som fardas i positiv x-riktning sa
kan vi skriva trycket och partikelhastigheten pa komplex form enligt

p(x.t) = pe'*™ (75)
och
V(x,t) = Ve = %e‘(‘”“m (76)

Da blir tidsmedelvardet av intensiteten i en aktuell punkt

o) vt=2 2 pyrar=L 57 )
0 /; Ty PC

1
=

dar p ar tryckets effektivvarde. Precis som man kan definiera ljudtrycksniva definierar
man ocksa ljudintensitetsniva enligt

L, :1OIog[II—J dar I, =10*W/m°® (78)

ref

Dér | &r absolutbeloppet av ljudintensitetsnivans tidsmedelvérde. 1y dr referensstorheten
for ljudintensitet. Det gar dven att pa motsvarande satt definiera ljudeffektsnivan som

IT
L, =10 Iog[l_I

ref

j dar IT,,, =102W (79)
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Viktiga formler
Rorelseekvationen i fluider och fasta medier ar

op_ oV

x_ P
Vidare galler for fluider sambandet mellan tryck och partikelhastighet

8p__ @
ot 7P°ax

For fasta medier har vi motsvarande samband mellan kraft och forskjutning

Fo_gsM
OX

Vagekvationen for longitudinella vagor i en dimension uttryckt i ljudtryck &r

’p 1 o°p

2 atz

dar ¢ =./yP,/ p ar utbredningshastigheten for tryckvagen i luft, y = 1.4 och Py &r
atmosfarstryck. | fasta medier ar utbredningshastigheten for longitudinella vagor

c= \/% . Aven partikelforskjutning, partikelhastighet, tojning eller kraft kan anvandas
istallet for tryck som faltvariabel i vagekvationen.

Den allmanna I6sningen till vagekvationen ar
p(x,t)=p,(t—x/c)+ p_(t+x/c)

Den harmoniska losningen pa vagekvationen pa komplex form (for fysikalisk tolkning, ta
realdelen av resultatet) ar
p(X,t) — ﬁJr ei(wt—kx) + ﬁ7 ei(wt+kx)

dar p, och f_ ar tryckamplituderna fér vagorna som utbreder sig i positiv respektive
negativ riktning. o ar vinkelfrekvensen och k = 27/1 = w/c ar vagtalet. Det ger

c=fA

Specifik akustisk impedans definieras som

z

P
v

For en framatskridande vag i luft (endimensionell utbredning i positiv x-riktning) blir den
specifika akustiska impedansen

17
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Z:&:pc
Vv

+

For skjuvvagor kan man uttrycka vagekvationen med den transversella forskjutningen w

2 2
a_vzv_ﬁ'a_\;vzo dar c = &
ox° G ot P

For bojvagor i balkar och plattor blir vagekvationen i en dimension

o'w o°w
T TP P

3
dar B = E%f(’jr rektangulart tvarsnitt och utbredningshastigheten (fasens)

¢ =2 Voo
k o)

Ljudenergi IT respektive ljudintensitet | ar

TI(t) = F(t) - v(t)
1(t) = p(t)-v(t
©oI0 = 10=p0VO
S
Utifran ljudtrycket definieras ljudnivan som
=2

p ) §
L, =1OIog(—2J dar p,, =2-10"°Pa

ref

Ljudeffektniva och ljudintensitetsniva berdknas utifran respektive tidsmedelvarde enligt

L, =10log 1 och L, =10log i
1_Iref Iref

dar e = 1072 W och lyef = 102 W/m?. Tidsmedelvardena ar

1=

O Sy, —

S -1
=/ p®-v(t)dt och T== ! p(t) - v(t)dt

For en véag som fortplantar sig i positiv x-riktning géller att T = p?/pc.

18
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Uppgifter

1. En ton med frekvensen f = 500 Hz utbreder sig i luft. Berdkna

a) vinkelfrekvensen .
b) periodtiden T.

¢) vaglangden A.

d) vagtalet k.

2. Utga fran foljande materialdata.

Amne/material

Densitet py [kg/m?]

E-modul / Bulkmodul [Pa]

Luft (22°C) 1.18 142-10° (5P0)
Sétvatten (20°C) 998 2.18-10°

Stal 7800 200-10°
Betong 2300 26-10°

Tré (i fiberriktningen) | 500 10-10°

Tabell 1 Densitet och styvhet for olika @mnen/material.

Bestam vaghastighet och impedans (Z = p/v for fluider, respektive Z = F/v for fasta

medier) for vagor i féljande medium:

a) Luft vid 20°C,
b) Luft vid 0°C,

c) Sotvatten vid 20°C.

d) Stal, longitudinell vag i cirkular stang med diametern 50 mm.

e) Stal, kvasilongitudinell vag (tvarkontraktion forsummas inte, v = 0.3) i samma stang.

f) Stal, skjuvvag i samma stang.

g) Longitudinell vag i trapelare med tvarsnittsmatt 125x125 mm.

h) Betong (utan armering) med tvarsnittet 400x400 mm.
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3. Visa att den komplexa tryckfunktionen

i (ct—kx)

p(xt) = pe
uppfyller den endimensionella vagekvationen i luft genom att sétta in i
ap_1op_
ox* ¢ ot?

(Ledning: satt in tryckfunktionen i vagekvationen och derivera, anvand att ¢ = Af.)

4. Vaghastigheten for en transversell vag i en strang ar 10 m/s. Vi tanker oss en icke-
harmonisk vag. Den transversella forskjutningen vid positionen x = 0 ar u(0,t) = 0.1-(t*-t%)
m nér tiden & mellan 0 <t <1 s, och for alla andra tidpunkter &r u(0,t) = 0.

a) Rita forskjutningen som en funktion av tiden vid positionen x = 0.

b) Rita forskjutningen som en funktion av laget vid tiden t = 1 s. (ledning: anvand
d’Alemberts 16sning for att uttrycka forskjutningen pa formen u(x,t)

c) Vad ar det matematiska uttrycket for forskjutningen som en funktion av tiden vid laget
x =10 m? Vad &r forskjutningen vid denna position vid tidpunkternat=1,t=15o0cht=
35?

d) Hur stor &r den transversella hastigheten vid x =10 moch t = 1.5 s?

e) Hur stor &r strangens lutning #vid x =10 moch t = 1.5 s?

5. For en plan vag som fardas i positiv x-riktning ar Z. = pc. Anvand Newtons rorelselag
och berékna Z. for en plan vag som férdas i negativ z-riktning.

6. Ljudintensitet och respektive tidsmedelvarde for en plan vag definieras som

I(x,t) = p(x,t)-v(x,t) och I= j[p(t)~v(t)dt

1
T
och ljudintensitetsnivan som

L, :10Iog[l—J dar I, =10"*W/m?®

ref

Bestédm utifran detta ett samband mellan ljudtrycksniva L, och ljudintensitetsniva L,. Anta
en positiv vag och rumstemperatur. Vad hander om de bada forvaxlas? oc =405 Pa-s/m.
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7. En kolv i vanstra dnden av ett ihaligt ror (vid x = 0) svanger med en forskjutning som
funktion av tiden u(t) = Gicos(at), dard = 0.12mm och @ = 800 rad/s. En ljudvag sprids i
roret, som har en tvarsnittsarea ar S = 0.01 m? och kan antas oandligt langt.

a) Bestamv(x,t) for den endimensionella vagen som fortplantas i réret uttryckt pa
komplex form. Hur stor &r hastighetsamplituden?

b) Bestam p(x,t), det vill sdga den komplexa tryckfunktionen for vagen.
c) Bestam ljudnivan i roret.
d) Bestam tidsmedelvardet av ljudintensiteten I for vagen.

e) Bestam ljudeffekten som sands ut av kolven (in i roret).

8. En cirkular stalstang med diametern 50 mm paverkas av en drivande kraft i ena anden
darx =0sdatt F(0,t) =F,, (0,t)=F, 6", dir Fgriy = 1KN och @ = 20 rad/s. Kraften
orsakar en fortskridande vag i x-riktningen. Bestam

a) o(x,t)
b) &(x,t)
c) u(x,t)
d) v(x,t)

e) Bestam Zgg utifran resultatet i d).
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Svar

1. a) o = 3140 rad/s

b) T=2ms
c)A=0.68m

d) k=9.24 rad/m

2.a)c =344 m/s
b) c =331 m/s
c) ¢ = 1480 m/s
d) ¢ =5060 m/s
e) ¢ = 4830 m/s
f) c =3140 m/s
g) c=4470 m/s
h) ¢ = 3360 m/s

Z =405 Pa-s/m

Z =428 Pa-s/m

Z =1.48-10° Pa-s/m
Z =77.6-10° Pa-s-m
Z =74.0-10° Pa-s-m
Z = 48.1.10° Pa-s-m
Z =34.9-10° Pa-s-m

Z =1.24-10° Pa-s:-m
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c)
10,9 = {0.1~ (t-17-(t-1°) 1<t<2
0 annars
u(10,1) =0 [m]
u(10,1.5) = 0.0125
u(10,3) =0

d) v(10,1.5) = 0.025 m/s
e) &10,1.5) = -0.0025 rad
6. L, =L, —0.16 dB, alltsa férsumbar skillnad!

7.a) v(x,t) =0.096-e' (72 m/s
b) p(x,t)=38.9.¢'@ /2 pgy
¢) L, =123dB
d) I =1.87W/m?

e) T1=18.7mW

8.a) o(x,t)=-509- ') kpa
b) e(x,t) =—2.55-€'*™*) ystrain
c) u(x,t)=0.645." 7D mm
d) v(x,t) =12.9-e'““ ' mm/s

e) Z = 77.6-10° Pa-s‘m
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