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Våg1 – Endimensionell vågutbredning 

Här kommer vågekvationen för framför allt longitudinalvågor att tas fram. När vi har fått 

fram vågekvationen och en lösningsmetodik kommer vi att behandla endimensionella 

longitudinalvågor i luft. Här behandlas även skjuvvåg och böjvåg i fasta material. 

Härledning av vågekvationen, longitudinalvåg i en stång 

Vi tänker oss att vi skär ut en liten del av en stång, frilägger denna och ställer upp 

Newtons rörelseekvation. Stångbiten har längden dx. Vidare har vi en utbredd massa per 

längdenhet  =  S, där  är densiteten och S är tvärsnittsarean. På den ena snittytan vid 

koordinaten x verkar en kraft F(x) och på den andra snittytan vid x+dx verkar samma 

kraft plus en viss förändring av denna, F(x+dx), vilket kan Taylorutvecklas och 

approximeras med F(x+dx)  F+F/xdx. Förskjutningen av den vänstra snittytan 

betecknas u(x) medan förskjutningen av den högra snittytan då blir u(x+dx), som på 

samma sätt approximeras med u(x+dx)  u(x)+u/xdx. 

 

 

Figur 1 Friläggning av stångelement 

Vi ställer nu upp rörelseekvationen som säger att summan av krafterna ska vara lika med 

massan gånger tyngdpunktens acceleration 
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Om dx är mycket litet kan vi vidare approximera förskjutningen av massans tyngdpunkt 

med u(x+dx/2)  u(x). Alltså har vi 
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Rörelseekvationen kan nu förenklas till 
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För att komma vidare behöver vi nu ytterligare en ekvation som relaterar krafterna med 

förskjutningarna. Från Byggnadsmekaniken känner vi till Hookes lag, som säger att 

spänningarna  är proportionella med töjningarna 

 E                  (6) 

där E är elasticitetsmodulen och tvärkontraktionen försummats. Vidare är spänning 

detsamma som kraft per ytenhet och töjning detsamma som förskjutning per längdenhet. 

Vi måste dock beakta att positiv spänning är dragen, medan vi har satt kraften tryckt, så 

vi får ha negativt tecken på kraften: 
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Töjning förhåller sig till förskjutningen som 
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Den sökta relationen mellan krafterna och förskjutningarna är således 
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Om vi deriverar ekvation (9) en gång med avseende på x och stoppar in i ekvation (5), så 

har vi slutligen vågekvationen för en longitudinalvåg i en stång: 

2

2

2

2

t

u

x

u
ES









               (10) 

  

0
2

2

2

2











t

u

Ex

u 
              (11) 

Vågekvationen är tydligen en andra ordningens partiell differentialekvation. För att lösa 

den behövs två begynnelsevillkor och två randvillkor. De flesta vågekvationer, så som 

transversalvågen i en gitarrsträng, en torsionsvåg i en svarv eller elektriska vågor, har 

denna form. Böjvågen i en balk har dock ett annat utseende, den är av fjärde ordningen. 
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Ofta använder man sig av förskjutningshastigheten v = u/t i stället för förskjutningen u. 

I sådana fall blir vågekvationen istället 
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eftersom derivatan /t verkar lika på alla termer. Ekvation (5) och (9) blir i detta fall 
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vilket ser lite snyggare ut, då relationerna är symmetriska (kom ihåg att  =  S). Dessa 

ekvationer brukar kallas fältekvationerna. Deriverar vi nu ekvation (13) med avseende på 

x och ekvation (14) med avseende på t, så har vi 
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och om vi stoppar in den ena i den andra 
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så får vi vågekvationen igen, men denna gång med kraften F som variabel. Det är 

tydligen likgiltigt vilken variabel man använde, och man använder lämpligen den som 

lämpar sig bäst för problemet i fråga. För vågor i fasta material är det vanligast att 

använda förskjutning som variabel. De olika variablerna brukar benämnas fältvariablerna. 

Vågutbredning 

Men vad är då en våg? 
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Figur 2 Vågutbredning i en matta. 

Vi kan tänka oss två personer som skakar en matta, vi kallar dem A och B. Vi tänker oss 

vidare att B håller sin kant stilla medan A gör en plötslig rörelse uppåt vid sin kant. 

Resten av mattan vill nu följa med i denna rörelse, med början med de punkter på mattan 

som är närmast A. Rörelsen fortsätter sedan att sprida sig med en konstant hastighet tills 

den når B. Om A fortsätter att skaka sin ände upp och ned, och provar olika takt i 

skakandet, olika frekvens, så kommer de finna att om man skakar snabbt så blir ”pulsen”, 

eller våglängden, kort och om man skakar långsamt så blir våglängden lång. Men oavsett 

vilken frekvens de skakar med så kommer spridningshastigheten att vara densamma. Med 

andra ord, händelsen att ”röra sig uppåt” sprider sig längs mattan med en viss hastighet 

som vi kan kalla c, vågutbredningshastighet. Det känns naturligt att c beror på mattans 

vikt och hur hårt A och B drar i mattan, hur stor spänningen är. Är massan stor, tung 

matta, transporteras vågen långsamt. Är spänningen stor går vågen snabbt. Den initiella 

förskjutningen kommer att repeteras vid en punkt belägen en sträcka x från A, och detta 

sker efter x/c sekunder, det vill säga den tid det tar för vågen att utbreda sig sträckan x. 

Det är viktigt att inse att ingen massa transporteras av vågen, vad som transporteras är 

endast möjligheten till rörelse. Massan i mattan rör sig endast upp och sedan ner igen. 

I exemplet med mattan ovan var förskjutningen uppåt medan vågutbredningen går mellan 

A och B, vilket är en transversalvåg. 

I exemplet med stången var vågutbredningen och förskjutningen riktad åt samma håll, en 

longitudinalvåg. Nedan visas exempel på hur harmoniska transversal- och 

longitudinalvågor kan se ut. I den övre figuren är våglängden , partikelförskjutningen w 

i y-led samt våghastigheten cT markerad. I den undre figuren är våglängden , 

partikelförskjutningen u i x-led samt våghastigheten cL markerad. 
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Figur 3 Exempel på transversalvåg och longitudinalvåg. 

Hur ska man då beskriva vågutbredningen? Vi återgår till exemplet med 

longitudinalvågen i en stång. Vi beskrev här förskjutningarna i en punkt med u, där u 

både är en funktion av rummet och tiden. 

),( txuu                 (19) 

Om vi nu tittar i en specifik punkt på stången, säg x = 0, där vi driver stången med en 

bestämd förskjutning udriv så har vi där endast en variabel 

)(),0( tutu driv               (20) 

Vi har tidigare sagt att vad som karakteriserar en våg är att rörelsen fortsätter att sprida 

sig med en konstant hastighet, som vi kallar c. Vid en annan position x =x1 på stången 

kommer därför samma tidshistoria att inträffa som för drivpositionen, men försenat på 

grund av gångtiden x1/c. Vågformen förändras alltså inte 

)/(),( 11 cxtutxu driv               (21) 

Helt allmänt, för en godtycklig position, har då förskjutningen reducerats till en funktion 

av en variabel t – x/c. Vi har dock missat att vågen i allmänhet kan gå både framåt, i 

positiv x-riktning, som bakåt, i negativ x-riktning. Alltså behöver vi lägga till en 

bakåtgående våg, vilken kan beskrivas med en variabel t + x/c 

)/()/(),( 11 cxtucxtutxu               (22) 
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Ovanstående funktion kallas d’Alemberts lösning och är lösningen till vågekvationen på 

den mest generella formen. 

Vi har sagt att vågformen inte ändrar sig beroende på var och när vi betraktar den, och att 

alla delar av vågen rör sig med samma hastighet. För en given tidshistoria vid x = 0, så 

kan man få vågformen, det vill säga motsvarande x-beroende vid en given tidpunkt 

(jämför med fotografi), genom att överföra varje förskjutning vid x = 0, till x-skalan med 

hjälp av hastigheten c, se figuren nedan. Funktionerna för förskjutningens t-beroende och 

förskjutningens x-beroende kommer då att bli spegelbilder av varandra. Matematiskt kan 

man se detta som en konsekvens av att t- och x-termerna i argumentet t – x/c har olika 

tecken. 

 

Figur 4 Tids- och rumsberoende för våg. 

Vi har nu först härlett vågekvationen och sedan resonerat oss fram till hur lösningen till 

denna bör se ut. Genom att sätta in den antagna lösningen i ekvationen, så kan vi se om 

den stämmer. För enkelhets skull antar vi att vi endast har en framåtgående våg, för 

bakåtgående våg gäller samma sak. Anta 

u(x,t) 

u(x,0) 

u(x,t1) 

u(x,t3) 
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Här betyder ’ derivata med avseende på hela argumentet, det vill säga u/ (t–x/c). Insatt 

i vågekvationen ger detta 
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 och för att detta ska gälla så måste våghastigheten vara  



E
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vilket verkar rimligt, då ett tyngre medium ger en långsammare våg, medan ett styvare 

medium ger en snabbare våg. 

Harmoniska vågor 

Vi har nu visat att funktioner av formen u(tx/c) löser vågekvationen och att 

våghastigheten c bestäms med hjälp av elasticiteten och densiteten. Ofta är det dock 

praktiskt att begränsa sig till harmoniska funktioner eftersom varje godtycklig funktion 

kan beskrivas med hjälp av harmoniska funktioner. Vi antar nu att drivningen är en 

harmonisk funktion 

)cos(ˆ)(),0( tututu drivdriv               (26) 

Om vi vill ha en lösning till vågekvationen på denna form behöver vi bara byta ut t mot 

tx/c. 
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Genom att införa en ny term k, som vi kallar vågtal, kan skrivsättet förenklas 
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Vågtalet k har tydligen samma betydelse för rumsberoende som  har för tidsberoendet. 

Vi skriver upp de båda frekvenstermerna jämte varandra 
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Det leder till ett enkelt samband mellan våglängd och frekvens 

fc                  (31) 

Här är T periodtid och  våglängd. 

 

Figur 5. Periodtid T och våglängd . 

Andra vågtyper i fasta material 

I exemplet med stången ovan har vi bortsett från tvärkontraktionen. Om materialet i 

stången är isotropt med tvärkontraktionstalet  får vi korrigera vågekvationen till 
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och våghastigheten blir då istället 
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Skjuvvågor 

På samma sätt som med longitudinalvågen ovan kan man ställa upp motsvarande 

vågekvation för skjuvvågor. Som innan använder man rörelselagen, fast nu i vertikalled, 

och skjuvspänning istället för normalspänning. Vågekvationen blir då 
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där w är förskjutningen i tvärriktningen
1
 och G materialets skjuvmodul. Den har samma 

lösning som ovan, 

))/(cos(ˆ),( cxtwtxww               (35) 

med våghastigheten 
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För isotropa material är våghastigheten för transversella skjuvvågor lägre än för 

longitudinella tryckvågor eftersom 
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Böjvågor 

Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska 

linjens ekvation. Den skiljer sig från de ovanstående genom att den består av fjärde 

rumsderivatan av förskjutningen istället för andraderivatan som ovan 
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Där B är balkens böjstyvhet, för rektangulärt tvärsnitt 

12

3bh
EEIB                (39) 

och S är balkens tvärsnittsarea. I en lång balk är vågekvationens (harmoniska) lösning 
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vilket är samma som för longitudinella vågor. När man sätter in lösningen i 

vågekvationen kan man lösa ut våghastigheten
2
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Vad man kan observera här är det viktiga resultatet att våghastigheten är beroende av 

frekvensen, ju högre frekvens desto snabbare går vågen. Våghastighetens 

                                                 
1
 Ofta använder man sig av v för att beskriva transversell förskjutning, men här sparas den till hastighet i 

longitudinell riktning. 
2
 När det gäller våghastighet för böjvågor måste man skilja man mellan fashastighet cf och grupphastighet 

cg. Den förra anger hur snabbt information i vågen (fasen) fortplantar sig, medan den senare hur energin 

fortplantar sig. De förhåller sig så att cg = 2cf 
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frekvensberoende kallas dispersion och sambandet ovan kallas dispersionsrelation. För de 

tidigare nämnda vågtyperna är ju våghastigheten samma oavsett frekvens. 

Vidare kan man observera att om frekvensen går mot oändligheten, vilket är fysikaliskt 

möjligt, så går hastigheten också mot oändligheten, vilket inte är fysikaliskt möjligt då 

information inte kan färdas snabbare än ljuset. Dessförinnan sätter dock teorin 

begränsningar i att antagandena hos balkteorin som ligger till grund för elastiska linjens 

ekvation inte längre gäller. Våglängden, som ska vara betydligt längre än balkens 

tjocklek, minskar med högre frekvens. 

Endimensionell vågutbredning i fluider 

De fenomen man framför allt behandlar i akustiken är vågutbredning i fluider, nämligen 

ljudvågor i luft. Med fluider menar man medier som inte tar upp skjuvspänningar, det vill 

säga gaser och vätskor. Således gäller de ekvationer som vi kommer att ta fram här både 

för ljudutbredning i luft och i vatten. För att hitta vågekvationen skär vi ut en 

infinitesimal strimla av fluiden, frilägger denna, ställer upp rörelseekvationen och ser vad 

som händer. Fluidelementet har längden dx. Vidare har vi en massa per volymsenhet, det 

vill säga densitet . På den ena snittytan verkar ett tryck p(x) = F/S och på den andra 

verkar samma tryck plus en viss förändring av denna, p(x + dx)  p(x) + p/xdx. 

Förskjutningen av den vänstra snittytan betecknas med vibrationshastigheten v gånger ett 

litet tidstillskott dt, så u = v dt, medan förskjutningen av den högra snittytan betecknas 

(v+v/xdx)dt. Det bör här påpekas att med vibrationshastighet så menar vi den del av 

fluidens hastighet som fluktuerar, vi tar alltså inte med det konstanta flödet från 

exempelvis vind, fläktar eller strömmande vatten. 

 

Figur 6. Fluidelement med tjockleken dx. 

Vi ställer upp rörelseekvationen för fluidelementet 
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Vi använder tryck istället för kraft, så: 

(v+v/xdx)dt v dt x+dx x 
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Om dx är mycket litet så kan vi anta att massans förskjutning kan beskrivas enbart med u 

eller v dt: 
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Rörelseekvationen kan nu förenklas till 
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För att komma vidare behöver vi nu ytterligare en ekvation som kan relatera krafterna 

med förskjutningarna. I fallet med en stång använde vi Hookes lag. När det gäller fluider, 

eller åtminstone om vi begränsar oss till gaser, så får vi använda den allmänna 

tillståndslagen för gaser. I fallet med vätskor kan man hitta motsvarande samband, som vi 

dock inte tar upp här. Vi börjar dock med att beskriva förändringen i 

vibrationshastigheten i relation till töjningen: 
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I Hookes lag har spänningen s och töjningen  samma tecken. Detta beror på att dragning 

är positiv spänning medan tryck är negativ. Motsvarigheten till Hookes lag i luft måste 

därför ha negativt tecken. Vi kan då skriva: 

Dp                 (48) 

där D är bulkmodulen (eller volymstyvheten). Vad vi nu behöver är ett uttryck för denna. 

Från fysikkursens avsnitt om gasfysik känner vi till att allmänna gaslagen vid adiabatisk
3
 

kompression kan skrivas som 

konstantPV               (49) 

där P är tryck, V är volym och  är kvoten mellan värmekapaciteterna  = Cp/Cv. För 

tvåatomiga gaser, som luft, är  = 1.4. Vi använder här stor bokstav för trycket P. Detta 

beror på att det här handlar om det totala trycket, som är uppbyggt avett konstant 

atmosfärstryck P0 samt ett vibrationstillskott p(t) som vi är intresserade av, P = P0 + p(t). 

Vi logaritmerar och deriverar nu gaslagen för att få ett användbart uttryck. 

                                                 
3
 En adiabatisk tillståndsförändring betyder, som ni vet från fysikkursen, att processen sker utan 

värmetransport eller värmeförluster, det vill säga förlustfritt i vårt fall. Då man vill ta hänsyn till förluster, 

som i absorbenter, tänker man sig istället isoterma tillståndsändringar, PV=konstant. 
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    0)konstantln()ln()ln(

)konstantln()ln()ln()konstantln()ln(



















V

tV

P

tP

t
VP

t

VPPV





        (50) 

Tidsdifferentialen dt finns i alla led och kan därför förkortas bort. Vidare kan vi 

approximera de båda andra differentialerna dP och dV med differenser 

00 











V

V

P

P

V

tV

P

tP
            (51) 

Man kan nu se att P = P(t) – P(0) = p(t) och att V/V. Således har vi 

0)(
)(

 t
P

tp
               (52) 

Som en sista approximation antar vi att man för små tryckförändringar kan ersätta det 

totala trycket P i nämnaren med det konstanta atmosfärstrycket P0 

0)(
)(

0

 t
P

tp
                (53) 

Vi flyttar om så att vi kan identifiera bulkmodulen 

0

0 )()(

PD

tPtp








              (54) 

Om vi kombinerar ekvation (47) med tidsderivatan av ekvation (54) så får vi den andra 

fältekvationen 

x

v
P

t

tp









0

)(
               (55) 

Om vi stoppar in ekvation (55) i (46), så har vi slutligen vågekvationen för en 

longitudinalvåg i luft (i en vätskevåg får vi använda en annan bulkmodul D): 

0
2
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2

2
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2

2

2

0













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






















































t

p

Px

p

tx

v
P

t

p

xt

v

x

p

x

v
P

t

p

t

v

x

p













        (56) 

Som innan kan vi skriva vågekvationen för den fältvariabel som vi vill använda i varje 

specifikt fall. Dessa skriver vi dock inte ut denna gång. Ur ekvation (56) kan vi vidare 

identifiera våghastigheten: 










0

1
2

2

22

2

t

p

cx

p
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

 0P
c                 (57) 

För luft kan vi nu lätt beräkna våghastigheten. Luftens densitet är  = 1.18 kg/m
3
 vid 

22C och normalt atmosfärstryck som är P0 = 1.01310
5
 Pa. Konstanten  som relaterar 

värmekapaciteterna för konstant tryck och konstant volym, är  =1.4 för tvåatomiga gaser 

som luft. Således är ljudutbredningshastigheten för luft: 

m/s347
18.1

10013.14.1 5




c             (58) 

Luftens densitet är dock beroende av temperaturen, så om man vill vara noggrann får 

man modifiera formeln för ljudhastigheten: 



























2732
14.331

2732
1

)0(

0 TT

T

P
c




          (59) 

där T denna gång är temperaturen i grader Celsius. Vanligvis räknar man dock med c = 

340 m/s, vilket motsvarar 18-19C. Om vi har en allmän fluid får vi istället använda 

bulkmodulen 



D
c                  (60) 

För sötvatten vid 20C är bulkmodulen D = 2.1810
9
 Pa. Som tidigare kan man använda 

andra fältvariabler än trycket i vågekvationen, till exempel partikelhastigheten
4
 v. 

Vanligen beskriver man ljudet med trycket p(x,t), men partikelhastigheten används också 

vilket vi snart ska se. 

Harmonisk lösning till vågekvationen i luft 

En harmonisk lösning till vågekvationen i luft uttryckt i tryck är 

)cos(ˆ),( kxtptxp                 (61) 

för en våg som fortskrider i positiv x-riktning, eller uttryckt i komplex form 

)(ˆ),( kxtieptxp 

                (62) 

Om man vill ta reda på vad partikelhastigheten är kan man använda rörelseekvationen 

                                                 
4
 Var observant på att partikelhastigheten v(x,t) = u(x,t)/t skiljer sig från våghastigheten c. Den förra är 

hastigheten i varje ögonblick för fluidelementet eller partikeln som befinner sig vid x och den senare är 

hastigheten med vilken vågrörelsen utbreder sig. 
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)()(

)(

11

11

kxtikxti

kxti

ep
c

ep
i

ik

dtepikdt
x

p
v

t

v

x

p








































        (63) 

Detta är ett viktigt resultat och konstanterna framför uttrycket brukar få en egen 

beteckning. Vi definierar därför den specifika akustiska impedansen Z, eller 

vågimpedansen, som kvoten mellan det komplexa trycket och den komplexa hastigheten i 

den framåtskridande vågen: 

v

p
Z                  (64) 

Impedansen är i allmänhet en komplex storhet och innehåller alltså både amplitud och 

fas. För en endimensionell våg som färdas i positiv x-riktning blir  ZZ en reell storhet 

c
v

p
Z 




                 (65) 

För en våg som fortskrider i negativ x-riktning kan man visa att impedansen blir 

c
v

p
Z 




                (66) 

Impedans kan beskrivas som ett motstånd till rörelse, en hög impedans i mediet innebär 

att det krävs ett högt tryck för att åstadkomma en viss partikelhastighet. Mekanikens 

motsvarighet till impedansen är styvhet, alltså kraft genom förskjutning eller motstånd 

mot deformation. Vi kan också se det som en överföringsfunktion som diskuterades i 

avsnittet om SDOF. 

Vid ljudövergångar mellan olika medier är det förhållandet mellan mediernas impedanser 

som avgör hur mycket av ljudenergin som transmitteras in i det nya mediet och hur 

mycket som reflekteras. Vid 20C och normalt lufttryck (och inget annat anges) brukar 

man räkna med impedansen för luft Zluft = 415 Pas/m och för sötvatten Zsötvatten = 

1.4810
6
 Pas/m. 

För fasta material brukar man istället använda sig av mekanisk vågimpedans, som 

definieras 

v

F
Z                  (67) 

Ljudtrycksnivå 

Vid praktiska ändamål är det osmidigt att använda tryckamplituden p̂ som mått på 

ljudstyrkan. Det är vanligt inom signalområdet använda effektivvärdet för 

tryckfunktionen istället, 
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

T

dttp
T

p
0

2)(
1~               (68) 

Där p~ kallas effektivvärde eller rms-värde (root-mean-square – roten ur tidsmedelvärdet 

av trycket i kvadrat). För en periodisk signal, vilket vi kan utgå ifrån i akustiska 

sammanhang, så gäller att p~ = 2p̂ . Inte heller detta är så praktiskt smidigt eftersom 

ljudtrycket har så stor spännvidd. Därför införde man tidigt måttet ljudtrycksnivå som 

definieras som 

Pa102där 
~

log20
~

log10 5

2

2






























 ref

refref

p p
p

p

p

p
L          (69) 

L står för ljudnivå och index p indikerar att det är ljudtrycksnivån, till skillnad från andra 

som visas senare. I regel säger man lite kortare ljudnivå och då är det underförstått att det 

är ljudtrycksnivån som avses då denna är vanligast använd. Enheten för ljudnivå är 

decibel, dB. 

Ljudintensitet och ljudeffekt 

Ljudintensiteten definieras som ljudenergi per tidsenhet som passerar genom en areaenhet 

vinkelrät mot utbredningsriktningen. Från grundkursen i mekanik får vi uttrycket för 

effekt i varje ögonblick som 

)()()( tvtFt                (70) 

där (t) är ljudeffekten i W, F(t) är kraften som verkar på areaenheten och v(t) är 

partikelhastigheten. Ljudintensitet är alltså effekt per areaenhet 

S

t
tI

dS

d
tI

)(
)()(





              (71) 

om energin är jämnt fördelad över ytan S. Vi kan skriva den momentana ljudintensiteten 

som 

)()()( tvtptI                (72) 

Precis som med tryck och hastighet är det mer användbart med tidsmedelvärdet av 

ljudintensiteten 

 

T

dttvtp
T

I
0

)()(
1

              (73) 

Tidsmedelvärdet av effekten (om energin är jämnt fördelad över S) är  
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 

T

dttvtp
T

S

0

)()(               (74) 

Om vi begränsar oss till en endimensionell vågrörelse som färdas i positiv x-riktning så 

kan vi skriva trycket och partikelhastigheten på komplex form enligt 

)(ˆ),( kxtieptxp                 (75) 

och 

)()( ˆ
ˆ),( kxtikxti e

c

p
evtxv   


            (76) 

Då blir tidsmedelvärdet av intensiteten i en aktuell punkt 

2

0

2

0

~1
)(

11
)()(

1
p

c
dttp

Tc
dttvtp

T
I

TT

  
          (77) 

där p~ är tryckets effektivvärde. Precis som man kan definiera ljudtrycksnivå definierar 

man också ljudintensitetsnivå enligt 

212W/m10där log10 













 ref

ref

I I
I

I
L            (78) 

Där I är absolutbeloppet av ljudintensitetsnivåns tidsmedelvärde. Iref är referensstorheten 

för ljudintensitet. Det går även att på motsvarande sätt definiera ljudeffektsnivån som 

W10där log10 12

 

















 ref

ref

L            (79) 
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Viktiga formler 

Rörelseekvationen i fluider och fasta medier är 

t

v

x

p









  

Vidare gäller för fluider sambandet mellan tryck och partikelhastighet 

x

v
P

t

p









0  

För fasta medier har vi motsvarande samband mellan kraft och förskjutning 

x

u
ESF




  

Vågekvationen för longitudinella vågor i en dimension uttryckt i ljudtryck är 

0
1

2

2

22

2











t

p

cx

p
 

där  0Pc  är utbredningshastigheten för tryckvågen i luft,  = 1.4 och P0 är 

atmosfärstryck. I fasta medier är utbredningshastigheten för longitudinella vågor 

Ec  . Även partikelförskjutning, partikelhastighet, töjning eller kraft kan användas 

istället för tryck som fältvariabel i vågekvationen. 

Den allmänna lösningen till vågekvationen är  

)/()/(),( cxtpcxtptxp    

Den harmoniska lösningen på vågekvationen på komplex form (för fysikalisk tolkning, ta 

realdelen av resultatet) är 

)()( ˆˆ),( kxtikxti epeptxp 





    

där p̂ och p̂  är tryckamplituderna för vågorna som utbreder sig i positiv respektive 

negativ riktning.  är vinkelfrekvensen och ck   2 är vågtalet. Det ger 

fc   

Specifik akustisk impedans definieras som 

v

p
Z   

För en framåtskridande våg i luft (endimensionell utbredning i positiv x-riktning) blir den 

specifika akustiska impedansen 
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c
v

p
Z 



  

För skjuvvågor kan man uttrycka vågekvationen med den transversella förskjutningen w 

0
2

2

2

2











t

w

Gx

w 
 där 



G
c    

För böjvågor i balkar och plattor blir vågekvationen i en dimension 

0
2

2

4

4











t

w
S

x

w
B   

där 
12

3bh
EB  för rektangulärt tvärsnitt och utbredningshastigheten (fasens)  

4

S

B

k
c f





   

Ljudenergi  respektive ljudintensitet I är 















S

t
tI

tvtFt

)(
)(

)()()(

)()()( tvtptI   

Utifrån ljudtrycket definieras ljudnivån som 

Pa102där 
~

log10 5

2

2















 ref

ref

p p
p

p
L  

Ljudeffektnivå och ljudintensitetsnivå beräknas utifrån respektive tidsmedelvärde enligt  




















ref

L log10  och 















ref

I
I

I
L log10   

där ref = 10
-12

 W och Iref = 10
-12

 W/m
2
. Tidsmedelvärdena är 

 

T

dttvtp
T

S

0

)()(  och  

T

dttvtp
T

I
0

)()(
1

 

För en våg som fortplantar sig i positiv x-riktning gäller att cpI 2~ . 
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Uppgifter 

1. En ton med frekvensen f = 500 Hz utbreder sig i luft. Beräkna 

a) vinkelfrekvensen . 

b) periodtiden T. 

c) våglängden . 

d) vågtalet k. 

 

2. Utgå från följande materialdata. 

Ämne/material Densitet 0 [kg/m
3
] E-modul / Bulkmodul [Pa] 

Luft (22C) 1.18 14210
3
 (P0) 

Sötvatten (20C) 998 2.1810
9
 

Stål 7800 20010
9
 

Betong 2300 2610
9
 

Trä (i fiberriktningen) 500 1010
9
 

Tabell 1 Densitet och styvhet för olika ämnen/material. 

 

Bestäm våghastighet och impedans (Z = p/v för fluider, respektive Z = F/v för fasta 

medier) för vågor i följande medium: 

a) Luft vid 20C, 

b) Luft vid 0C, 

c) Sötvatten vid 20C. 

d) Stål, longitudinell våg i cirkulär stång med diametern 50 mm. 

e) Stål, kvasilongitudinell våg (tvärkontraktion försummas inte,  = 0.3) i samma stång. 

f) Stål, skjuvvåg i samma stång. 

g) Longitudinell våg i träpelare med tvärsnittsmått 125125 mm. 

h) Betong (utan armering) med tvärsnittet 400400 mm. 
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3. Visa att den komplexa tryckfunktionen 

)(ˆ),( kxtieptxp    

uppfyller den endimensionella vågekvationen i luft genom att sätta in i 

0
1

2

2

22

2











t

p

cx

p
 

(Ledning: sätt in tryckfunktionen i vågekvationen och derivera, använd att c = f.) 

 

4. Våghastigheten för en transversell våg i en sträng är 10 m/s. Vi tänker oss en icke-

harmonisk våg. Den transversella förskjutningen vid positionen x = 0 är u(0,t) = 0.1(t
2
-t

3
) 

m när tiden är mellan 0 < t < 1 s, och för alla andra tidpunkter är u(0,t) = 0. 

a) Rita förskjutningen som en funktion av tiden vid positionen x = 0. 

b) Rita förskjutningen som en funktion av läget vid tiden t = 1 s. (ledning: använd 

d’Alemberts lösning för att uttrycka förskjutningen på formen u(x,t) 

c) Vad är det matematiska uttrycket för förskjutningen som en funktion av tiden vid läget 

x = 10 m? Vad är förskjutningen vid denna position vid tidpunkterna t = 1, t = 1.5 och t = 

3 s? 

d) Hur stor är den transversella hastigheten vid x = 10 m och t = 1.5 s? 

e) Hur stor är strängens lutning  vid x = 10 m och t = 1.5 s? 

 

5. För en plan våg som färdas i positiv x-riktning är Z+ = c. Använd Newtons rörelselag 

och beräkna Z- för en plan våg som färdas i negativ z-riktning. 

 

6. Ljudintensitet och respektive tidsmedelvärde för en plan våg definieras som 

),(),(),( txvtxptxI      och      

T

dttvtp
T

I
0

)()(
1

 

och ljudintensitetsnivån som 

212W/m10där log10 













 ref

ref

I I
I

I
L  

Bestäm utifrån detta ett samband mellan ljudtrycksnivå Lp och ljudintensitetsnivå LI. Anta 

en positiv våg och rumstemperatur. Vad händer om de båda förväxlas? c =405 Pas/m. 
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7. En kolv i vänstra änden av ett ihåligt rör (vid x = 0) svänger med en förskjutning som 

funktion av tiden )cos(ˆ)( tutu  , där 12.0ˆ u mm och  = 800 rad/s. En ljudvåg sprids i 

röret, som har en tvärsnittsarea är S = 0.01 m
2
 och kan antas oändligt långt. 

a) Bestäm ),( txv för den endimensionella vågen som fortplantas i röret uttryckt på 

komplex form. Hur stor är hastighetsamplituden? 

b) Bestäm ),( txp , det vill säga den komplexa tryckfunktionen för vågen. 

c) Bestäm ljudnivån i röret. 

d) Bestäm tidsmedelvärdet av ljudintensiteten I för vågen. 

e) Bestäm ljudeffekten som sänds ut av kolven (in i röret). 

 

8. En cirkulär stålstång med diametern 50 mm påverkas av en drivande kraft i ena änden 

där x = 0 så att ti

drivdriv eFtFtF  ),0(),0( , där Fdriv = 1kN och  = 20 rad/s. Kraften 

orsakar en fortskridande våg i x-riktningen. Bestäm 

a) (x,t) 

b) (x,t) 

c) u(x,t) 

d) v(x,t) 

e) Bestäm Zstål utifrån resultatet i d). 
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Svar 

1. a)  = 3140 rad/s 

    b) T = 2 ms 

    c)  = 0.68 m 

    d) k = 9.24 rad/m 

2. a) c = 344 m/s Z = 405 Pas/m 

    b) c = 331 m/s Z = 428 Pas/m 

    c) c = 1480 m/s Z = 1.4810
6
 Pas/m 

    d) c = 5060 m/s Z = 77.610
3
 Pasm 

    e) c = 4830 m/s Z = 74.010
3
 Pasm 

    f) c = 3140 m/s Z = 48.110
3
 Pasm 

    g) c = 4470 m/s Z = 34.910
3
 Pasm 

    h) c = 3360 m/s Z = 1.2410
6
 Pasm 

4. 
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    d) v(10,1.5) = 0.025 m/s 

    e) (10,1.5) = -0.0025 rad 

6. LI = Lp – 0.16 dB, alltså försumbar skillnad! 

7. a) )2(096.0),(   kxtietxv m/s 

    b) )2(9.38),(   kxtietxp Pa 

    c) 123pL dB 

    d) 87.1I W/m
2
 

    e) 7.18 mW 

8. a) )(509),( kxtietx   kPa 

    b) )(55.2),( kxtietx   strain 

    c) )2(645.0),(   kxtietxu mm 

    d) )(9.12),( kxtietxv   mm/s 

    e) Z = 77.610
3
 Pasm 


