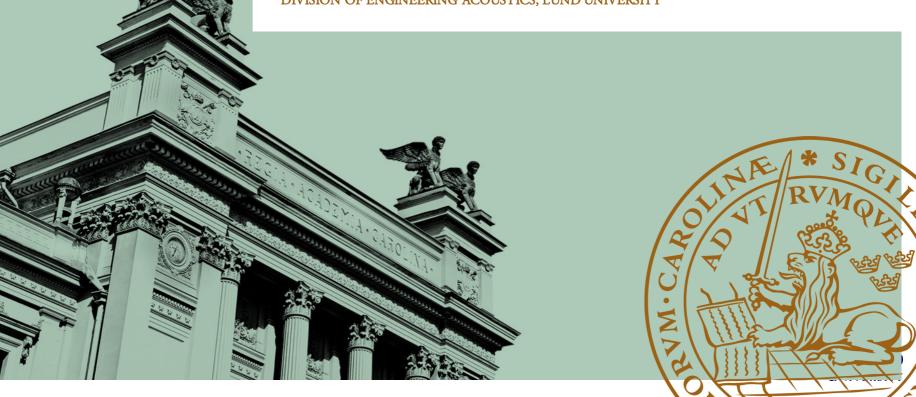


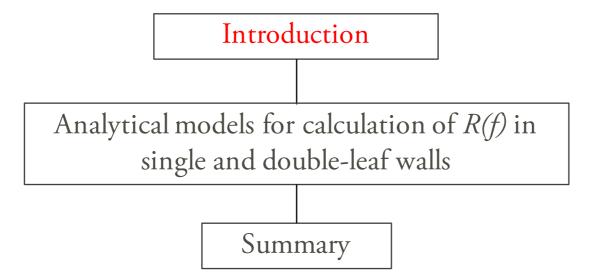
Acoustics (VTAN01)

- Analytical models for sound reduction

NIKOLAS VARDAXIS

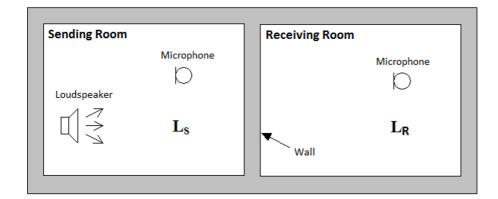
DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY





... recap (I)

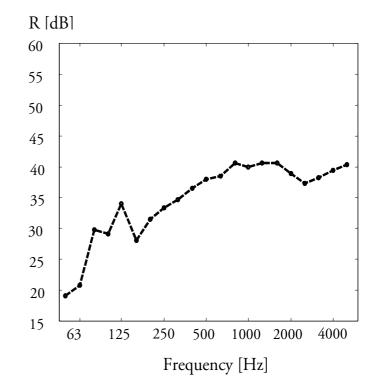
• Airborne sound insulation measurements (ISO standards)

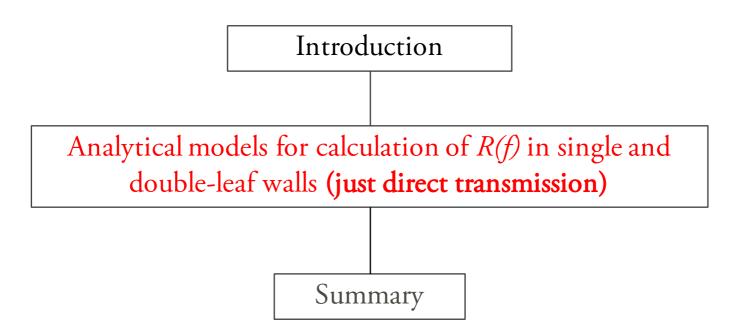


$$R(f) = L_S(f) - L_R(f) + 10\log\left(\frac{S}{A(f)}\right)$$

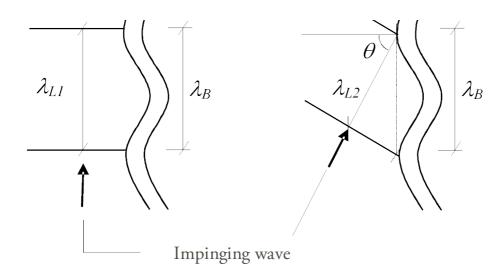
Statement of results:

- $R'_w(C_{50-3150}; C_{tr})$
- $R_w(C_{50-3150}; C_{tr})$





DEF: Coincidence – critical frequency (I)

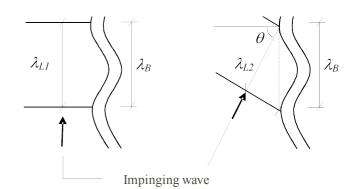


- The wavelength of a bending wave λ_B is dependent on frequency, bending stiffness and mass density
- When the wavelength of sound in air coincides with the structural wavelength → Coincidence phenomena
 - Radiation efficiency becomes very high
 - Poor insulation

DEF: Coincidence – critical frequency (II)

Bending wave velocity in a plate

$$c_B = \sqrt{2\pi f} \sqrt[4]{\frac{B}{m''}}$$



• If $f = f_c$ thus $c_B = c_o = 340$ m/s ($f_c = critical frequency$)

$$f_c = \frac{c_0^2}{2\pi} \sqrt{\frac{m''}{B}}$$

Or expressed as a function of the coincidence number

$$f_c = \frac{K}{h}$$

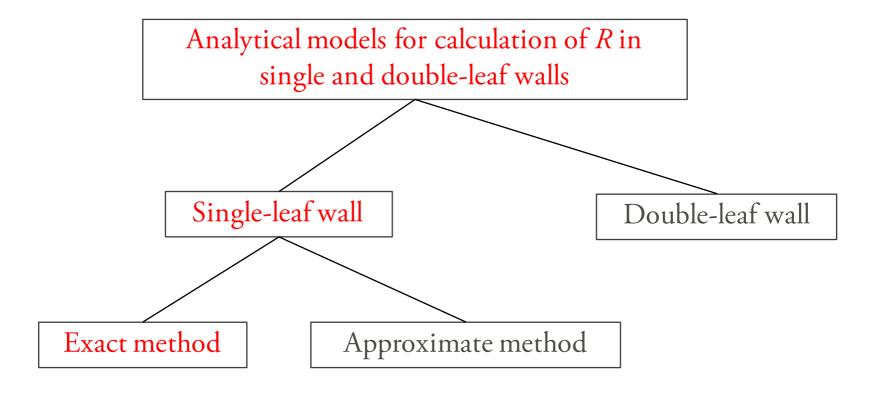
NOTE: The condition for coincidence is that $\lambda_B = \lambda \sin(\phi)$. Therefore, if the incidence angle ϕ decreases, the coincidence frequency f_c increases according to f_c (ϕ)= $f_c/\sin^2(\phi)$. The lowest frequency at which coincidence occur (critical frequency) occurs at the incidence angle ϕ =90°.

Critical frequency for common materials

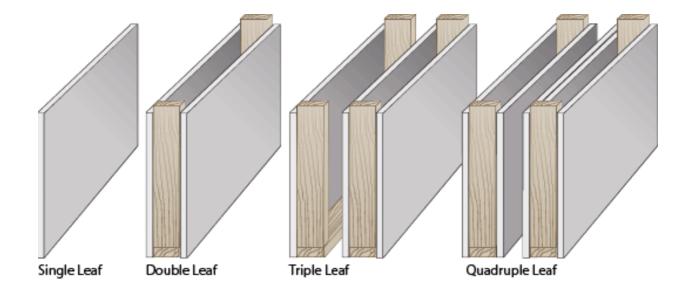
• For a homogeneous isotropic plate of uniform thickness, the coincidence number is:

$$K = 60000 \sqrt{\frac{\rho}{E}}$$

Material	Coincidence number (K)	Thickness [m]	$f_c [{ m Hz}]$
Concrete	18	160	110
Light concrete	38	70	540
Gypsum	32	10	3200
Steel	12-13	1	12000
Glass	18	3	6000



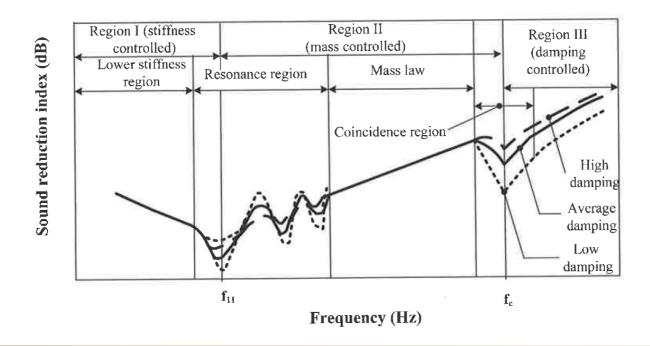
Wall types



Sound reduction index of single-leaf partitions (I)

Exact method

- Region I: Stiffness-controlled region ($f < f_{11}$)
- Region II: Mass-controlled region $(f_{11} < f < f_c)$
- Region III: Damping-controlled region (f_c < f)



Sound reduction index of single-leaf partitions (II)

- Region I: Stiffness-controlled region $(f < f_{11})$
 - Panel vibrates as a whole (considered thin)

$$R(f) = 10 \log \left(\frac{1}{K_S^2}\right) - 10 \log \left(\ln \left(1 + K_S^{-2}\right)\right)$$

$$K_{S}(f) = 4\pi f \rho_{F} c_{F} C_{S}$$

$$C_{S} = \frac{768(1 - v^{2})}{\pi^{8} E h^{3} \left(\frac{1}{a^{2}} + \frac{1}{b^{2}}\right)^{2}}$$

C_s: Mechanical compliance for a rectangular plate

E: Young's modulus of the material the wall is made of

h: wall thickness

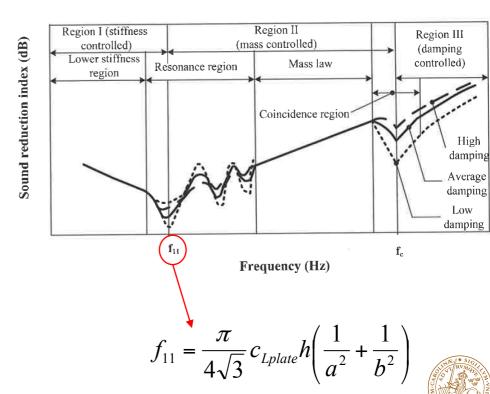
a, b: plate dimensions

v: Poisson's ratio of the wall

 $\rho_{\rm E}$: Density of the surrounding fluid (F), i.e. air

c_F: wave propagation speed in the fluid (F), i.e. air

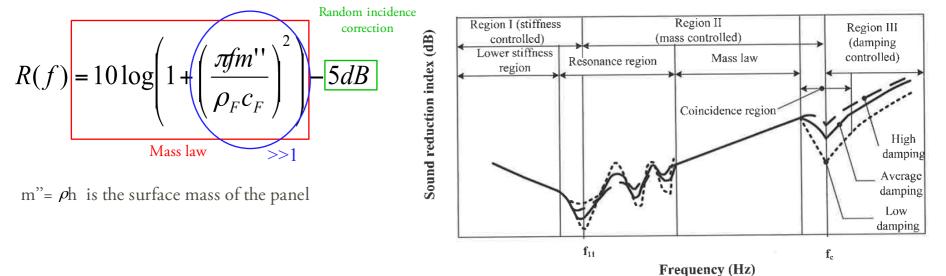
c_{Lplate} wave propagation speed in the plate (longitudinal wave)



For a simply supported plate

Sound reduction index of single-leaf partitions (III)

- Region II: Mass-controlled region $(f_{11} < f < f_c)$
 - Transmission loss independent of stiffness (controlled by mass inertia)
 - Some energy transmitted and part reflected at panel surface



NOTE: Although the above equation is valid for frequencies up to f_c , it yields only accurate results for $f \le 0.5f_c$. The mathematical expression around f_c is mathematically cumbersome and rarely used, its being the reason why approximate methods were developed.

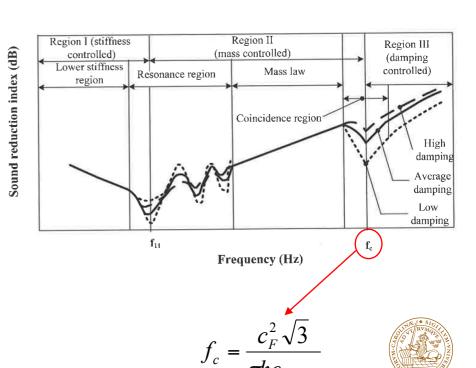
Sound reduction index of single-leaf partitions (IV)

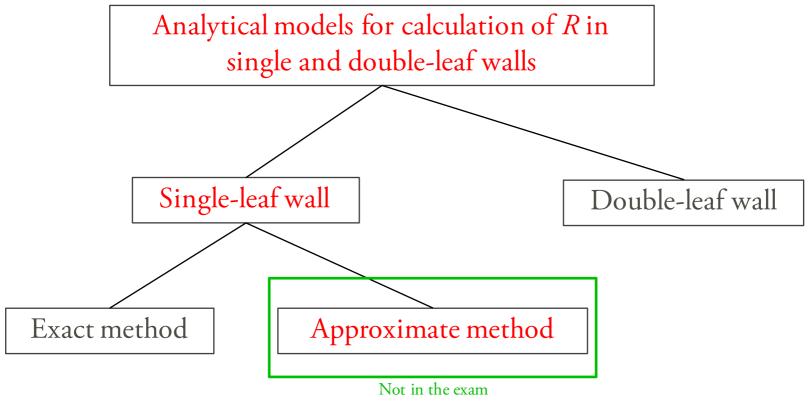
- Region III: Damping-controlled region (f_c < f)
 - Curve "dip" controlled by internal material damping
 - Important for design (low insulation)

$$R(f) = R(f_c) + 10\log(\eta) + 33.22\log\left(\frac{f}{f_c}\right) - 5.7dB$$

$$R(f_c) = 10 \log \left(1 + \left(\frac{\pi f_c m''}{\rho_F c_F} \right)^2 \right)$$

 η is the total loss factor or damping of the panel

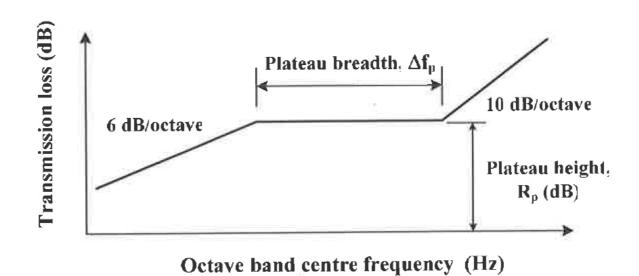




Sound reduction index of single-leaf partitions (I)

Approximate method

- Region I: Mass-controlled region $(f < f_1)$
- Region II: "Plateau" $(f_1 < f < f_2)$
- Region III: Stiffness-controlled region ($f_2 < f$)



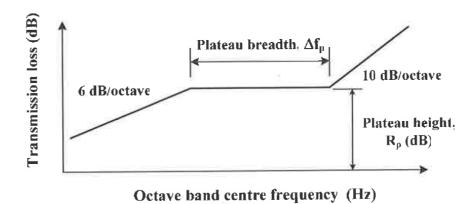
Hyphotesis: Infinite panel and diffuse field excitation

NOTE: f₁ and f₂ are not the resonance and coincident frequency explained in the exact method (see next slides)

Sound reduction index of single-leaf partitions (II)

- Region I: Mass-controlled region $(f < f_1)$
 - Transmission independent of panel stiffness

$$R(f) = 20 \log(m') + 20 \log(f) - 20 \log(\frac{\rho_F c_F}{\pi}) - 5dB$$



Sound reduction index of single-leaf partitions (III)

- Region II: "Plateau" $(f_1 < f < f_2)$
 - Governed by internal damping
 - Height of the plateau depends on material
 - f_1 and f_2 are the lower and upper limits of the plateau
 - » Calculated with expresions of adjoining regions

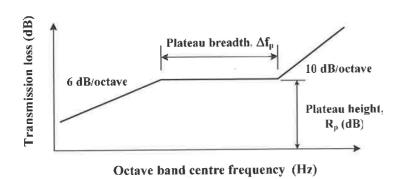


Table 4.2 Values of the plateau height (R_P) and plateau width (Δf_P) for the approximate method of calculation of the transmission loss for panels (partially after Watters, 1959).

Material	Specific surface density (kg/m² per cm)	Plateau height, $R_P(dB)$	$\Delta f_P = f_2 - f_1$ (octave)	Plateau breadth, frequency ratio, f_2/f_1
Aluminum	26.6	29	3.5	11*
Brick	21	37	2.2	4.5
Concrete, dense	22.8	38	2.2	4.5
Glass	24.7	27	3.3	10
Lead	112	56	2.0	4
Masonry block Cinder** Dense Plywood, fir Plaster, sand Steel	11.4 5.7 17.1 76	30 32 19 30 40	2.7 3.0 2.7 3.0 3.5	6.5 8 6.5 8 11*

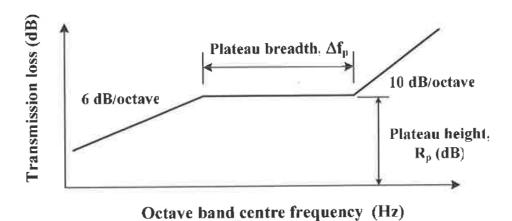
^{*} These materials have, in general, very low damping. The numbers are for a typical panel in place

^{**} Hollow block. The values are determined for 6-in (150 mm) plastered block.

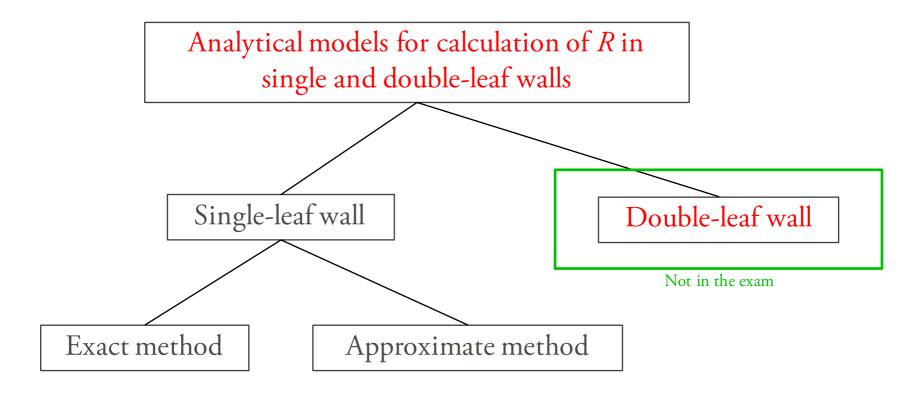
Sound reduction index of single-leaf partitions (IV)

- Region III: Mass-controlled region $(f_2 < f)$
 - Governed by stiffness of the panel

$$R(f) = R(f_2) + 33.22 \log(\frac{f}{f_2})$$

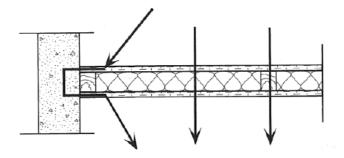


NOTE: The slope of the expression (10 dB/octave) should just be used only for the 2 octaves above f_2 . For the following octaves, one should use a slope equal to 6 dB/octave, i.e. " $20\log(f/f_{2\text{oct}})$ " instead of " $33.22\log(f/f_2)$ ", where $f_{2\text{oct}}$ is the frequency where the 3^{rd} octave above f_2 starts.



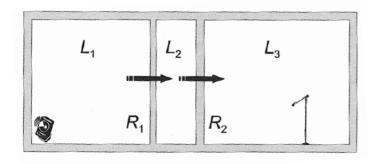
Introduction

- Double-leaf wall literature → rather extensive
 - Theoretical analysis, less developed due to complexity



- Analyses often carried out using FEM, SEA.
- Several theoretical derivations of sound transmission
 - Double-leaf wall without mechanical coupling
 - Double walls with structural connections
 - **–** ...

Sound reduction index of double-leaf walls



$$R_{1} = L_{1} - L_{2} + 10 \log \left(\frac{S}{A_{2}}\right)$$

$$R_{2} = L_{2} - L_{3} + 10 \log \left(\frac{S}{A_{3}}\right)$$

$$\Rightarrow R_{DoubleWall} = L_{1} - L_{3} + 10 \log \left(\frac{S}{A_{3}}\right)$$

$$\Rightarrow R_{DoubleWall} = R_{1} + R_{2} + 10 \log \left(\frac{A_{2}}{S}\right)$$

• Approximate empirical model for a double leaf wall without structural connections, with cavity filled with porous absorber (Sharp 1978)

$$R = \begin{cases} R_{M} & ; f < f_{0} \\ R_{1} + R_{2} + 20 \log(f \cdot d) - 29 dB & ; f_{0} < f < f_{d} \end{cases} \qquad f_{0} = \frac{c}{2\pi} \sqrt{\frac{\rho_{F}}{d} \left(\frac{1}{m_{1}''} + \frac{1}{m_{2}''}\right)}$$

$$f_{0} = \frac{c}{2\pi} \sqrt{\frac{\rho_{F}}{d} \left(\frac{1}{m_{1}''} + \frac{1}{m_{2}''}\right)}$$

 R_M denotes the mass law with $M=m_1+m_2$

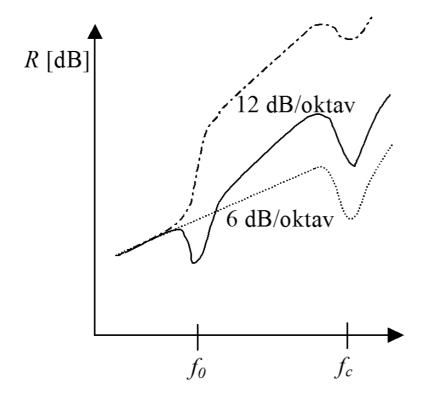
 R_1 and R_2 denote the individual sound reduction index for each leaf

d: distance between the two leaves i.e. (cavity thickness)

NOTE: Diffuse field assumed in both rooms

Examples (I)

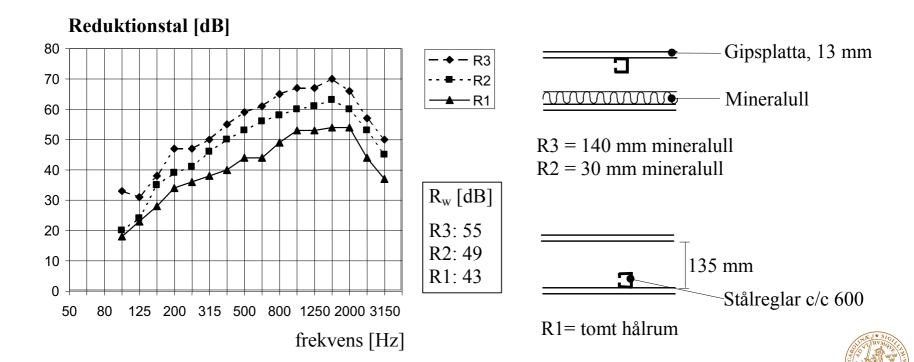
• Improvement in the sound reduction index of a double-leaf wall respect to a single wall, and also when including insulation in the cavity.



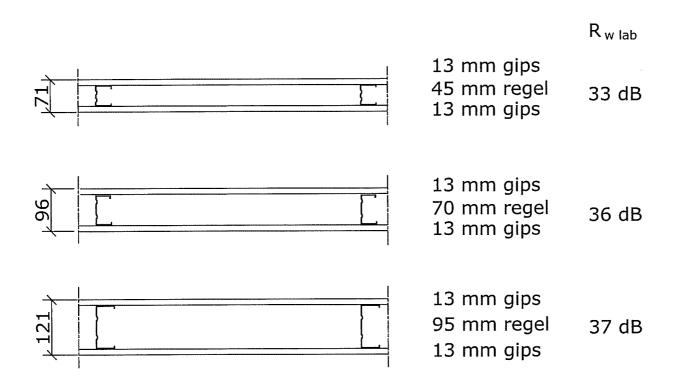
- ___ Dubbelvägg med hålrumsdämpning
- Dubbelvägg utan hålrumsdämpning
- ----- Enkelvägg med samma totala vikt som dubbelväggen

Examples (II)

• Variation in the sound reduction index of a double-leaf wall when varying parameters in the cavity (inclusion of insulation and its thickness).

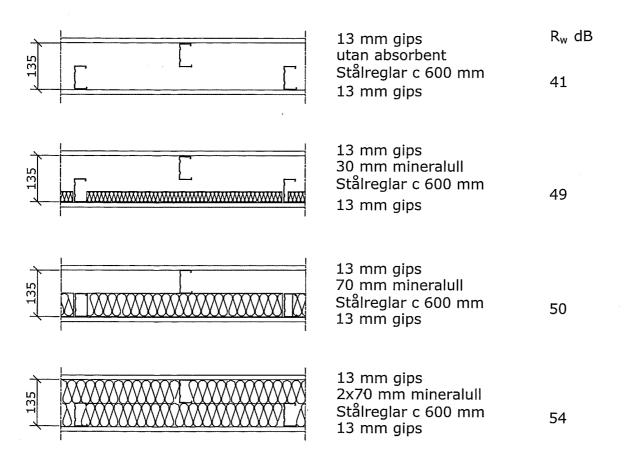


Examples (III)



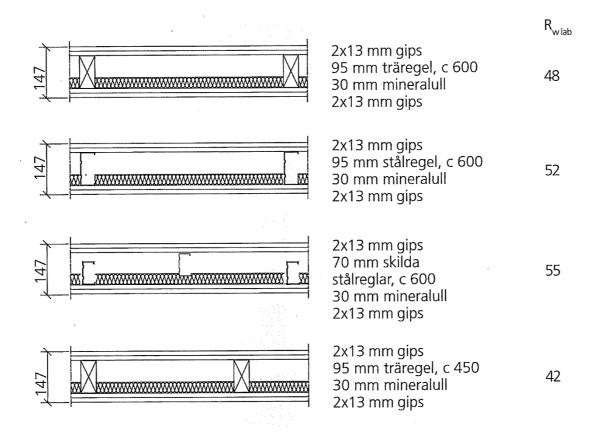
Figur 4:24. Exempel på inverkan på det vägda reduktionstalet av avståndet mellan dubbelväggarna. Laboratoriemätresultat.

Examples (IV)



Figur 4:25. Exempel på inverkan på det vägda reduktionstalet av absorbent i spalten på dubbelvägg med separata reglar. Laboratoriemätresultat.

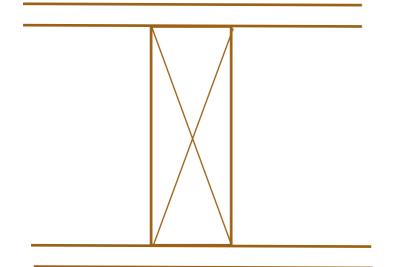
Examples (V)

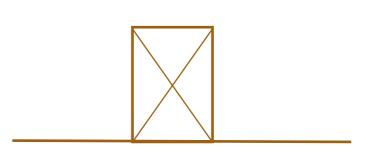


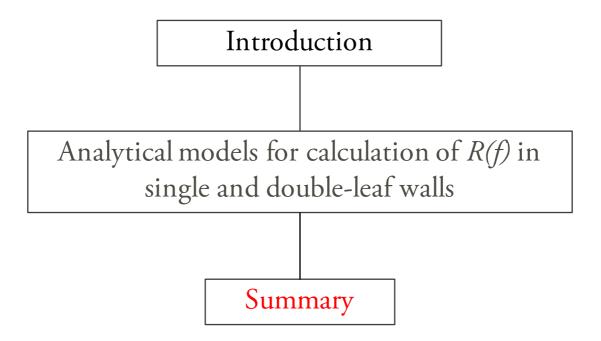
Figur 4:26. Exempel på inverkan på det vägda reduktionstalet av olika förbindningar, reglar, i en dubbelvägg. Laboratoriemätresultat.

Examples (VI)

"Rule of thumb": decoupled structures perform much better → acoustic bridges eliminated

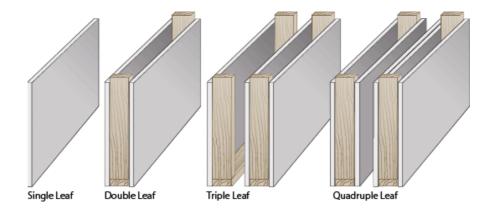






Summary (III)

- Analytical calculation methods of reduction sound index
 - Single-leaf wall
 - » Exact method
 - » Approximate method *(not in the exam)*
 - Double-leaf wall



Thank you for your attention!

nikolas.vardaxis@construction.lth.se

