

Acoustics VTAN01

2. Measurement Techniques

NIKOLAS VARDAXIS

DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

Outline

Why do we measure?

Introduction (I)

• Paradigm of natural sciences

- Theory: explanained and generalised experimental results
- <u>Prediction:</u> use theory to predict consequences
- Experiment: observation / measurement of phenomena

Introduction (II)

Eisenhart [1876-1965]: "To measure is to assign <u>numerical values</u> to <u>concepts</u> of physical quantities to symbolise the relations which exist between them regarding special properties"

Introduction (III)

- Experimental process to acquire new knowledge of a "product"
- Planned actions for quantitative comparison of a measurand with an unit
- Measurand: physical quantity to be measured
- Measurement equipment: software, standards, aparatus...

Outline

Signals

- Acquisition: voltage-time
 - Unequivocally related to the measurand

• Noise: changes the smooth signal to a "jagged" curve

- Signal to noise ratio (SNR)
 - SNR>1 means Signal>Noise
 - Filtering

$$SNR = \frac{P_{signal}}{P_{noise}}$$

$$SNR_{dB} = 10 \log_{10} \frac{P_{signal}}{P_{noise}}$$

Getting ready for the analysis

- To get the signal into a computer, one needs to digitalise it
- Digitalise (also called digitise): conversion from analogue signal to a stream of discrete values (numbers)
- Δt between two consecutive values: given by sampling frequency

Sampling frequency

- The red dots (samples) do not truly represent the signal
- How to select an appropriate sampling frequency?

NYQUIST-SHANNON CRITERION

sampling frequency must be twice the higher frequency in the signal

Nyquist-Shannon sampling criterion

Let x(t) be a continuous-time signal and X(f) its FT

$$X(f) = \int_{-\infty}^{Def} x(t)e^{i2\pi ft}dt$$

x(t) is said to be bandlimited to a one-sided baseband bandwidth, B, if:

$$X(f) = 0 \quad \forall \quad |f| > B$$

The the sufficient condition for "exact" reconstructability from samples at uniform sample rate is:

$$f_s > 2B \Leftrightarrow B < \frac{f_s}{2}$$
 ; $T = \frac{1}{f_s}$

2B is called the Nyquist rate and it is a property of the band-limited signal, while $(f_3/2)$ is called the Nyquist frequency and is a property of the sampling system

Aliasing

- If Nyquist-Shannon criterion is not fulfilled (bad sampling)
 - Two different continuous signals become indistinguishable

- Example: <u>Helicopter</u>: Stroboscopic effect
- Example: Image aliasing (Sampling / Pixel density wrong)

How to analyse the data?

- Waveform: amplitude as a function of time
- Spectrum: frequencies contained in the signal
- Leap between domains: FT
- In practice, software apply FFT

(b) Frequency domain.

FFT example (Matlab)

```
%Juan Negreira; May 2011
Calculates the discrete fourier transform of the timedomain signal y(t)
%Y:amplitude of the frequency components
%f:frequencies[Hz]
\$Only the unique points are returned ie. f lies in 0 <= f <= Fs/2
%% Introducing the time signal
dt=1/100:
et=4:
xData=0:dt:et;
yData=3*sin(4*2*pi*xData);
%% Calculating the FFT
%Number of points in input data
NFFT=length(yData);
%Nyquist frequency
Fn=1/(xData(2)-xData(1))/2;
%Absolute value of the FRF
FFTY=abs(fft(vData));
NumUniquePts=ceil((NFFT+1)/2);
% fft symmetric, throw away second half
FFTY=FFTY(1:NumUniquePts);
% Take magnitude of Y
Yfft=abs(FFTY);
% Multiply by 2 to take into account the fact that we
% threw out second half of FFTY above
Yfft=Yfft*2;
% Account for endpoint uniqueness
Yfft(1)=Yfft(1)/2;
% We know NFFT is even
Yfft(length(Yfft))=Yfft(length(Yfft))/2;
% Scale the FFT so that it is not a function of the length of y.
Yfft=Yfft/length(vData);
%Frequencies
freq=(0:NumUniquePts-1)*2*Fn/NFFT;
%% Plotting time signal and FFT
subplot (2,1,1)
plot(xData, yData); grid on
axis([0 et -8 8])
xlabel('Time [s]'); ylabel('Amplitude')
subplot (2,1,2)
plot(freq, Yfft);grid on
```

xlabel('Frequency [Hz]'); ylabel('Amplitude')

Frequency [Hz]

FFT example (Matlab)

FFT example (Matlab)

• Example: <u>video</u>

Resonance

- Resonance (def.):
 - Tendency to oscillate at a greater amplitude at some frequencies
- Depends on:
 - Mass
 - Stiffness
 - Damping
- Examples:
 - Earthquake design
 - Bridges (<u>Tacoma</u> & <u>Spain</u>)
 - Cup
 - Plate (mode shapes)

Outline

Excitation sources (floor vibrations)

- Standardised
 - Tapping machine
 - Rubber tire

Excitation sources (floor vibrations)

- Standardised
 - Tapping machine
 - Rubber tire

- Shaker
- Japanese ball
- Impact hammer
- Human walking
- **–** ...

Excitation sources (acoustics)

- Standardized
 - Loudspeakers (noise)
- Non-standardized
 - Cap-gun
 - Baby-crying
 - Impulse

Outline

Sensors and transducers

- Transducers: detection
- Sensors: detect and communicate
 - Parameters:
 - » Sensitivity: "electrical output / mechanical input", e.g. [mV/ms⁻²]
 - » Frequency response: sensitivity over whole spectra
 - » Phase response: time delay between input and output
 - » Resolution: smallest input increment reliably detected
 - » Dynamic range: output proportional to input
 - » Saturation: maximum output capability
 - » Weight < 0.1 x weight specimen to be measured</p>
 - » Environmental characteristics: temperature, humidity...
 - » Repeatability / Reproducibility
 - » Eccentricity

Calibration (I)

- What is it?
 - Comparison between the value indicated in a device and a reference known value

- Why calibrate?
 - Repeatability
 - Transference
 - Equipment exchange
 - Fulfillment of quality standards

Calibration (II)

• Examples:

– Sound level meter:

Accelerometers:

Microphones (I)

- Acoustical-to-electric transducer (sound → electric signal)
- Scalar pressure sensors with an omnidirectional response

Microphones (II)

• Requirements:

- Good acoustic and electric performance
- Minor influence from the environment
- High stability of sensitivity and frequency response
- High suitability for measurement
- Comprehensive specifications and performance description.

Microphones (III)

Microphones' directionality (polar plots)

- Microphone's sensitivity to sound from various directions
 - Omnidirectional
 - Unidirectional (e.g. cardioid and hypercardioid)
 - Bidirectional

Microphones (IV)

Directional Characteristics

Microphones (V)

Free Field Correction

Brüel & Kjær

BEYOND MEASURE

www.bksv.com, 13

Microphones (VI)

Time Weighting

Microphones (VII)

Example: iPhone Built-in Microphone Frequency Response

REF: http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/

Accelerometers (I)

• Mechanical, piezoelectric, hall effect, capacitive...

Accelerometers (II)

• Avoiding errors due to accelerometer resonance

Source: Measuring vibration (B&K)

Accelerometers (III)

• Be aware of the mounting method...

Others (I)

- Gyroscopes
 - Measure or maintaining orientation
 - Based on conservation of angular momentum

- LVDT sensors
 - Linear Variable Differential Transformers
 - Output voltage proportional to the displacement of the core

Others (II)

- Pressure sensors
 - Output voltage proportional to the pressure

- Interferometers
 - Output voltage if obstacle detected

- Velocity pickups
 - Voltage proportional to the relative velocity between elements
- Smartphones
 - Different sensors

In-situ vibratory measurements (Example)

Note / Reminder

Outline

Errors – Introduction

- Ideal measurements: no errors
- Real ones always do
- Clear defined processes to identify every source of error
- Measurement system errors can only be defined in relation to the solution of a real specific measurement task

VOI analysis

- Value of Information analysis (VOI)
 - How much do I want to "pay" for my information / output?

Errors in measurements

- <u>Before</u> the measurement:
 - Uncertainty
 - Reliability / Confidence
 - Risk
 - Probability

- After the measurement:
 - Error: $\Delta x = x_{real} x_{measured}$

NOTE: the concept of error presumes a knowledge of the correct value and it's therefore an abstraction

Quality of measurements

- Lack of systematic deviation from a true value: <u>accuracy</u>
- Bias: average deviation from a true value
- Lack of scatter: <u>precision</u>
 - Repeatability (variability when measuring by 1 person)
 - Reproducibility (variability caused by changing operator)

Error "chain"

- Measurement system type. Common errors:
 - Input error
 - Sensor error
 - Signal Transmission error 1
 - Transducer error
 - Signal Transmission error 2
 - Converter error
 - Signal Transmission error 3
 - Computer error
 - Signal Transmission error 4
 - Indication error

Figure 1. Measurement chain.

Types of errors (I)

- Systematic error (bias)
 - Permanent deflection in same direction from true value
 - It can be corrected
 - Types:
 - » Lack of gauge resolution
 - » Lack of linearity
 - » Drift (time, temperature...)
 - » Hysteresis

Types of errors (II)

- Gross errors
 - Human mistakes

$$X_{true} = X_{measured} + e_{syst} + e_{random}$$

- Random error
 - Remains after correct gross and systematic errors
 - » It cannot be corrected
 - Short-term scattering of values around a mean value
 - Varies in an unpredictable way
 - Expressed by statistical methods
 - Reasons
 - » Lack of equipment sensitivity
 - » Noise
 - » Imprecise definition

Examples of errors

- Wire error

- Music and external impact

- Step motor (2/4.5 Hz), harmonic signal?

Outline

Prefabricated wooden buildings

• Timber volume element (TVE)-based building

- Method (to develop numerical prediction tools):
 - Calibration FE model with in-situ measurements
 - Modify features in the model

Finite Element model for TVE-based building

Calibration (preliminary results)

• Measurements

• Simulations

T-junctions

- Influence of the use of glue in lightweight timber junctions
 - Investigate how to model connections

Calibration of the FE models with measurements in terms of modal analyses to understand their behaviour

Outline

Conclusions

- To measure: acquire knowledge of a new product
 - Analyses prior to measurements
 - Measurement plan based on analyses and purpose
- Signals: frequency and time domain
 - Nyquist-Shannon criterion
 - Resonance
- Excitation sources
- Measurement devices
- Errors
 - Measurements: accompanied by a quality statement
- Document the process (pictures, notes...)

Thank you for your attention!

nikolas.vardaxis@construction.lth.se

