

Auralization

What is auralization?

- Wikipedia: "a procedure designed to model and simulate the experience of acoustic phenomena rendered as a soundfield in a virtualized space."
- But why?

The principles of auralization

Sound Sound source perception

The principles of auralization

Something about LTI systems

See separate files

Determining the impulse response

- In rooms
 - Measurements
 - Calulations/Simulations

Wave based simulations

- Numerical methods such as FEM, BEM, FDTD
- Dense meshes → Long calculation time
- High accuracy

Geometrical acoustics

- Based on approximations
- No wave phenomena.
 - Interference and resonance
 - Diffraction
- Model sound energy propagation
 - Image source
 - Raytracing
 - Radiosity methods

Image source method

Image source method

- Time delay and attenuation
- Issues with room shape
- Variations on the image source method.

Raytracing

- Source-reflection-receiver
- Reflection
- Issues and limitations

Navvab, Mojtaba & Heilmann, Gunnar & Meyer, Andy. (2012). Dynamic Variation of the Direct and Reflected Sound Pressure Levels Using Beamforming.

What about the listener related stuff?

- Another black box
- HRIR
- What effects are there?

Head effects

- Interaural Time Difference
- Interaural Level Difference

Ear effects

Destructive and constructive interference

In conclusion

