

Exercises week 3 – Room acoustics

1. Consider a noise with the following 1/3 octave spectrum:

f [Hz]	100	125	157	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000
Lp [dB]	70	65	67	75	60	70	72	72	72	77	75	70	65	62	57	55	55	50

- a. Give its spectrum by octave band
- b. Determine the global noise pressure level (un-weighed)
- 2. Given the following data about three different rooms, answer the questions below:

Dimensions [m]	Average absorption coefficient
Room 1: 8×8×2.7	$\alpha_1 = 0.04$
Room 2: 5×5×2.7	$\alpha_2 = 0.04$
Room 3: 15×12×3	$\alpha_3 = 0.04$

- **a.** Use Sabine's law to determine the reverberation time of the three rooms.
- b. Instinctively, we associate large rooms with a long reverberation time. Is this correct?
- 3. An auditorium has the following dimensions: length (L=40 m), width (W=20 m) and height (H=5 m). All its walls and the floor have a constant acoustic absorption coefficient of α =0.25, whereas the ceiling has an unknown acoustic absorption coefficient α '. Measurements of the reverberation time in the room yield T_{60} =0.80 seconds (consider it constant for all frequencies)
 - a. Calculate α ' by use of Sabine's law.

The room contains a source emitting uniformly in all the directions with a sound power Π =0.10 W. In each point of the auditorium the global sound intensity I is the sum of two terms:

- Direct field intensity (originating directly from the source) $I_d = \Pi/(4\pi r^2)$ at a distance r from the source.
- Intensity of the reverberated field (originating from the reflections on the walls) I_r =4 Π /A in any point of the room.
 - **b.** At which distance r_I to the source do we have an equality $I_d = I_r$?
 - **c.** Calculate the global sound intensity I_1 and the corresponding sound intensity level at distance r_1 .

<u>Reminder</u>: the sound intensity corresponding to the audition threshold is $I_0 = 10^{-12} \,\text{W/m}^2$.

- **4.** Determine and plot the absorption coefficients $\alpha_s(f)$ in 1/3 octave-bands for a glass wool panel by using the given measured reverberation times for 2 different configurations:
 - Configuration 1: Empty reverberation room.
 - Configuration 2: Reverberation room with the walls covered by a surface S_s of glass wool.

Use the following data: the volume of the reverberation room is $V = 200 \text{ m}^3$, the surface of the walls in the reverberation room is $S = 200 \text{ m}^2$, the surface of the sample is $S_s = 12 \text{ m}^2$ and the reverberation times for both configurations are given in the table below.

f(Hz)	100	125	160	200	250	315	400	500	630
T_I	13.7	10.9	6.5	6.2	6.3	6.1	6	6.5	7.1
T_2	12.3	8.6	5	4.6	4.3	3.5	3.0	2.6	2.5
f(Hz)	800	1000	1250	1600	2000	2500	3150	4000	5000
T_I	7.1	6.4	6.2	5.6	4.5	3.9	3.2	2.5	1.8
T_2	2.4	2.1	2.0	2.0	1.9	1.8	1.7	1.4	1.2

Answers:

1. a.

f[Hz]	125	250	500	1000	2000	4000
L_p [dB]	72.6	76.3	76.8	79.6	67.2	58.6

b.
$$L_p = 83.14 \text{ dB}$$

2. a. $T_{60,1} = 3.2 \text{ s}$,

 $T_{60,2} = 2.6 \text{ s},$

 $T_{60,3} = 4.1 \text{ s.}$

b. Theoretical.

3. a. $\alpha' = 0.56$

b. $r_1 = 3.98 \approx 4 \text{ m}$,

 $I_I = 10^{-3} \text{ W/m}^2$,

 $L_I = 90 \text{ dB}.$

4. a.

f(Hz)	100	125	160	200	250	315	400	500	630
α_s	0.034	0.08	0.15	0.18	0.22	0.35	0.47	0.64	0.71
f(Hz)	800	1k	1.25k	1.6k	2k	2.5k	3.15k	4k	5k
α_{s}	0.76	0.88	0.93	0.89	0.85	0.84	0.79	0.9	0.83

b. $\alpha_s = 0.16 \cdot V/S_s \cdot (1/T_I - 1/T_\theta) + 0.16 \cdot V/ST_\theta$